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Abstract: Zero-day attacks take use of undiscovered flaws to evade detection by cybersecurity detection systems. 

According to the findings, zero-day attacks are prevalent and pose a serious risk to computer security. Zero-day 

attacks are difficult to detect using the conventional signature-based detection approach since their signatures are 

usually not accessible in advance. Because machine learning (ML)-based detection techniques can capture the 

statistical features of assaults, they hold promise for the detection of zero-day attacks. This survey study presents 

a thorough analysis of ML-based methods for detecting zero-day attacks, comparing their ML models, training 

and testing data sets, and assessment outcomes. Test data samples are assumed to be drawn from pre-observed 

classes that were utilized in the training phase using the usual ML assessment process. In applications like 

Network Intrusion Detection Systems (NIDSs), it might be difficult to gather data samples of every attack type 

that has to be monitored. Because they were non-existent at the time, zero-day attacks—a novel kind of attack 

traffic that ML-based NIDSs encounter—are not utilized in training. Consequently, this study suggests a new 

zero-shot learning approach to assess how well ML-based NIDSs identify zero-day attack scenarios. In order to 

differentiate between known assaults and benign behaviour, the learning models in the attribute learning step 

translate network data characteristics to semantic attributes. The models build connections between known and 

zero-day attacks during the inference step in order to identify them as malicious. Zero-day Detection Rate (Z-

DR), a new assessment metric, is created to assess how well the learning model detects unknown assaults. Two 

important machine learning models and two contemporary NIDS data sets are used to assess the suggested 

framework. The findings show that ML-based NIDSs are not able to identify certain zero-day attack groups 

identified in this study as hostile. Subsequent investigation reveals that assaults with a low Z-DR have a greater 

Wasserstein Distance range and a substantially different feature distribution than the other attack classes. 

Keywords: - Zero-Day Attacks, Network Intrusion Detection Systems (NIDSs), Wasserstein Distance Range, 

Machine Learning (ML), Attack Classes, Training, Statistical Characteristics, Applications. 

I. Introduction 

By 2025, it is anticipated that the amount of data generated by IoT networks would have grown to 79.4 zettabytes 

(ZB). Since cloud computing, every IoT device sends its data to a central server on the cloud, where it may be 

aggregated and subjected to various pre-processing and analysis operations. Accordingly, the Centralized Deep 

Learning (CDL) approach has been widely suggested for network-based botnet attack detection in massive IoT 

network traffic data with strong classification performance [1, 2].  

A Deep Reinforcement Learning (DRL) technique that can stop hostile strikes. Additionally, the Wireless Sensor 

Network (WSN) uses the Lightweight Dynamic Auto encoder Network (LDAN) technique to detect network 

intrusions in devices with little resources [1, 2]. In earlier research, we put forward several Deep Learning (DL) 

techniques [2, 3] that are capable of processing vast amounts of network traffic data in order to defend 

communication networks from cyberattacks. But contemporary IoT networks are rapidly growing in scalability. 

Consequently, it could be challenging to offload large amounts of dispersed IoT network traffic data to a distant 

central cloud server for data processing in practical use cases because of network limitations. Additionally, [3], 

the CDL technique requires more memory space for data storage, [3, 4], has a high communication overhead, and 

takes longer to train. Additionally, cloud data centers are often situated distant from the locations of IoT devices. 

Because of this, the CDL-based botnet detection approach has a large latency. 

An intrusion detection system, or IDS, is one of the primary defences against online attacks. Traditional intrusion 

detection systems employ attack signatures [4], while more current systems use machine learning techniques. 

Intrusion detection systems have been in use for a long time. Extracting an attack's signature is a difficult and 
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time-consuming task [4, 5]. Furthermore, these techniques only apply to assaults that have previously been 

identified and examined; they are susceptible to fresh attacks that have never been identified before. Newer IDSes 

don't need signatures [5]. These IDSs use machine learning (ML) techniques, particularly deep learning 

techniques, to identify threats. With regard to the flow contents, the authors have created an IDS system based on 

deep learning that can categorize various assaults and benign traffic flows [5–6]. 

In the realm of intrusion detection, there are statistical and machine learning-based anomaly detectors; 

nonetheless, their primary objective is to differentiate between legitimate traffic and malicious activity [5, 6]. The 

attack type of the malicious traffic cannot thus be identified as a relevant detection report. These detectors' 

incapacity to discern novel benign traffic behaviours that is included in the unknowns is another flaw [6, 7]. A 

significant obstacle for conventional machine learning-based anomaly detectors, which rely on conventional 

clustering techniques, is the enormous dimensionality of network flow material. Deep learning-based models are 

used in intrusion detectors primarily because of the large dimensionality of the input [7]. 

This research is unusual in that it suggests a deep learning-based paradigm for intrusion detection adaptation to 

zero-day assaults. The framework's goal is to report the specific attack type of malicious traffic while taking into 

account novel assaults and novel benign flow behaviours. The unknown samples are grouped based on the 

appropriate new categories [7, 8]. The system then uses the newly named classes to update itself once an expert 

labels these clusters. Over time, the framework may be updated thanks to this procedure [7, 8]. To the best of our 

knowledge, this research is the first for network security to leverage open set recognition in deep learning-based 

intrusion classifiers [8, 9]. In addition, deep learning-based classifiers are integrated with the conventional 

clustering approach to collect further evidence of the new assault during the analysis and updating stages [8, 9]. 

For the first time, this clustering and classification combination is used to intrusion detection [9, 10].  

1.1 Intrusion Detection Systems Based on Machine Learning 

There are two types of machine learning-based intrusion detection systems: deep learning-based and conventional. 

Finally, we examine several primary research papers on ML-based IDSes using classical models. Research uses 

the SVM, the most well-known classical classifying technique. However, for unsupervised applications, the k-

nearest neighbour’s (KNN) technique is often used [8]. The key component of an IDS is the KNN algorithm [8, 

9]. Random forests (RF) are a powerful technique that can handle uneven data and is resistant to overfitting. They 

have been employed in works such as the ML-Based IDS [10]. 

1.2 Novelty-Based Detectors  

Regarding intrusion detection systems, one of the main issues is zero-day attacks. The primary flaw in 

conventional signature-based intrusion detection systems is these assaults [11]. Since the old method relies on 

known attacks to extract signatures, it is susceptible to zero-day attacks that occur for the first time. The learning-

based IDSes have this problem as well. Zero-day attack detection is a kind of open set recognition novelty 

detection in learning-based models. The two primary categories of learning-based detectors are anomaly-based 

learning and classification-based learning [12]. Learning models based on anomalies may identify anomalous 

traffic. However, identifying and reporting discovered assaults is their primary shortcoming. Conversely, 

classification-based models are susceptible to zero-day attacks, much as signature-based detectors, but they are 

able to disclose the subcategory of known attacks [13]. Covering the shortcomings of the aforementioned learning-

based models is the goal of this article. The categorization of known and unknown (i.e., zero-day) attacks is 

reported concurrently [14]. 

One of the primary research avenues for identifying zero-day attacks is the detection of outliers, or instances or 

occurrences that differ from normal traffic. However, due to their large false-positive and false-negative rates, the 

present outlier-based detection approaches have a major flaw in their very poor accuracy rates [15]. As was said, 

the system is exposed to attack because to the high false-negative rates, and cyber security operation centers waste 

time due to the high false-positive rates; in fact, only 28% of incursions that are probed are genuine [16]. False-

negative results might limit the development of IDSs; for instance, they decrease their efficacy [13, 16]. 

Internet of Things (IoT) network zero-day attack detection framework. For detection, a distributed diagnostic 

system is used. Zero-day attack pathways may be found using a Bayesian probability model. In order to detect 
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assaults, the authors presented a prototype and visualized attacks in a structure resembling a graph. Used the CIC-

AWS-2018 dataset to assess six distinct supervised machine learning approaches. Decision trees, random forests, 

k-nearest neighbour’s, multilayer perceptron’s, quadratic discriminant analysis, and Gaussian naïve Bayes 

classifiers are among the methods the author’s use [16, 17]. How these supervised machine learning approaches 

are taught on benign traffic only to be used for the detection of unknown assaults and how zero-day (previously 

undetected) attacks are simulated and identified are not properly explained by the authors. Transfer learning is 

also used to identify zero-day attacks. Using transfer learning, one may map the relationship between known and 

unknown assaults. Using dative transfer learning, Deep Tran can identify zero-day exploits [17]. 

Moreover, zero-day malware detection is addressed by ML. To identify zero-day malware, for instance, the 

efficacy of several machine learning methods (ML) such as Support Vector Machine (SVM), Naïve Bayes, Multi-

Layer Perceptron, Decision trees, k-Nearest Neighbour, [19], and Random Forests is examined, while the Deep-

Convolutional Generative Adversarial Network (DCGAN) is used [19]. 

Using Deep Learning (DL) to discover outliers for zero-day attacks with strong recall is what we suggest doing 

in this study [20]. The primary objective is to develop a lightweight intrusion detection model with a high recall 

(true-positive rate) and low fallout (false-positive rate) that can identify fresh (unknown) intrusions and zero-day 

assaults. The complexity and problems that come with new assaults will thus be lessened with a strong detection 

capacity of zero-day attacks [19, 20]. 

The two main categories into which cyberattack detection systems are traditionally divided are anomaly-based 

detection systems and signature-based detection systems. Static signatures, also known as fingerprints, are 

preconfigured in signature-based systems and reflect known threats [19, 20]. By comparing the incoming signature 

with an attack signature that is already in the repository, the detection is accomplished. The anomaly detection 

techniques, on the other hand, have a concept of typical activity and identify departures from that profile [20, 23]. 

Both strategies have been well researched. The effectiveness of signature-based detection systems in identifying 

known threats with high detection accuracy and recall has actually been shown by their successful deployment in 

operational contexts. Since the signatures for zero-day attacks are usually not accessible in the repository, it is 

costly to maintain the signature library current, and signature-based detection is vulnerable to Miss Zero-day 

attacks with a startlingly low recall [20, 23]. 

The identification of zero-day threats is one of the main and continuous difficulties in using signature-based 

NIDSs to secure computer networks. An unprecedented danger that aims to compromise or interfere with network 

communications is known as a zero-day assault. Unknown to security managers, hackers may take advantage of 

this vulnerability before it is fixed [20, 23]. As an example, consider the June 2019 discovery of a zero-day 

vulnerability in Microsoft Windows that specifically targeted local escalation privileges [23]. When a zero-day 

attack is found, it is often documented with a CVE number and a severity level and published to the publicly 

accessible Common Vulnerabilities and Exposures (CVE) list. In order to identify zero-day attacks from a network 

layer standpoint, threat-related IOCs are often added to a list of detection databases that signature-based NIDSs 

employ [20, 23]. Simply because the whole collection of IOCs has not been identified or registered for monitoring 

at the time of exploitation, signature-based NIDSs are thus considered unreliable in identifying zero-day attacks 

[22, 23]. 

The performance of ML-based NIDSs in identifying zero-day attack scenarios is assessed using a novel ZSL 

framework proposed in this study [23]. A collection of semantic features learned from seen assaults is used by the 

framework to assess how effectively an ML-based NIDS can identify undiscovered attacks. The suggested ZSL 

arrangement is divided into two major phases. During the attribute learning phase, the models identify and 

associate the distinctive characteristics of known assaults (seen classes) with the network data properties. During 

the inference stage, the model links observed and zero-day (unseen) assaults to help identify and categorize them 

as malicious [24]. During the setup, the training and testing sets that comprise the visible and unseen classes stay 

apart. The suggested setup, in contrast to conventional evaluation techniques, uses a novel measure called Zero-

day Detection Rate (Z-DR) to assess how well ML-based NIDS detect zero-day threats [26]. 

II. Related Works  
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(Tawalbeh, L. A. 2023) The scientific community has been more interested in creating a thorough, reliable, and 

efficient intrusion detection system (IDS) as a result of the decades-long rise in cyberattacks [22]. Many of the 

recently suggested solutions lack a comprehensive IDS approach because they specifically rely on attack signature 

repositories, out-of-date datasets, or fail to take zero-day (unknown) attacks into account when creating, honing, 

or testing models based on machine learning (ML) or deep learning (DL). In real-time contexts, the suggested 

IDS is less reliable or useful if these elements are ignored [12]. 

(Abadi, M. 2022) Numerous intrusion detection and prevention systems (IDPS) have been implemented in order 

to detect questionable activity. These zero-day assaults, however, are often concealed from IDPS because 

attackers are using more complex advanced cyber-attacks and new vulnerabilities in systems [13]. Numerous 

academics have been motivated by these characteristics to suggest various AI-based methods for thwarting, 

identifying, and countering such sophisticated assaults [15]. 

(Abadi, M. 2023) Zero-day malware is malware that is so new or has never been seen before that it cannot be 

detected by anti-malware software [14]. Because of its freshness and the dearth of mitigation techniques currently 

in use, zero-day malware is difficult to identify and prevent. Malware detection is one of the many study areas 

where deep learning has emerged as the most prominent and dominating subfield of machine learning in recent 

years [22]. Finding deep learning methods that may be useful in identifying or categorizing zero-day malware is 

essential given the serious danger that these malicious programs pose to cybersecurity and business continuity. 

(Soltani, F. M., 2019) Identifying zero-day vulnerabilities and assaults is a difficult task. It is crucial that network 

managers be able to accurately identify them. The defines mechanism's resilience will increase with precision. 

The system can identify zero-day malware with 100% accuracy in the best-case scenario, meaning it won't have 

to worry about incorrectly classifying innocuous files as dangerous or allowing disruptive bad programs to execute 

as benign [15]. The effectiveness of several machine learning techniques in identifying zero-day malware is 

examined in this article. We evaluated 34 machine/deep learning classifiers and found that the random forest 

classifier had the highest accuracy [19]. The study raises a number of research challenges about how well machine 

and deep learning algorithms identify zero-day malware with 0% false positive and false negative rates. 

III. Proposed Methodology  

A classic machine learning assessment approach uses the same set of data classes for both training and testing the 

learning model. During training, the model learns to recognize patterns directly from each data class. In order to 

identify data samples that are produced from the same data classes used in the training stage [22], the model uses 

the learned patterns in the testing stage [21]. The premise of this assessment method is that the data set gathered 

for ML model training comprises the whole set of classes that the model would see after being deployed in 

production. For the ML-based NIDSs that are presently being suggested, a collection of known attack classes is 

used to train and evaluate the model [14, 16]. The model's ability to identify data samples from known attack 

groups as malicious is therefore assessed [16]. 

𝑫𝒕𝒓 = {(𝒙, 𝒚)|𝒙 ∈ 𝑿𝒕𝒓,𝒚 ∈ 𝒀𝒕𝒓} ……………….1 

𝑫𝒕𝒔𝒕 = {(𝒙, 𝒚)|𝒙 ∈ 𝑿𝒕𝒔𝒕,𝒚 ∈ 𝒀𝒕𝒔𝒕} ………………..2 

𝑫𝒕𝒓
𝒛 = {(𝒙, 𝒚)|𝒙 ∈ 𝑿𝒕𝒓,𝒚 ∈ 𝒀𝒕𝒓

𝒛 = {𝒃, 𝒂𝟏,𝒂𝟐 … … … , 𝒂𝒏}{𝒂𝒛}} 𝒇𝒐𝒓 𝒛 ∈ {𝟏, … . 𝒏} …………..3 

𝑫𝒕𝒔𝒕 = {(𝒙, 𝒚)|𝒙 ∈ 𝑿𝒕𝒓,𝒚 ∈ 𝒀𝒕𝒓} = {𝒃, 𝒂𝟏,𝒂𝟐 … … … , 𝒂𝒏}}  …………………..4 
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Fig.1 The Proposed methodology. [18] 

3.1 Experimental setup  

It is essential to assess the ML-based NIDS's capacity to identify zero-day assaults. In this study, ML-based NIDSs 

Random Forest (RF) and Multi-Layer Perceptron (MLP) were designed using two popular machine learning 

models [18, 19]. 

• UNSW-NB15: The Cyber Range Laboratory of the Australian Centre for Cyber Security (ACCS) published this 

popular and extensively used NIDS data collection in 2015 [19, 20]. 

• NF-UNSW-NB15-v2- In 2021, a Net Flow data set was created and made available, based on the UNSW-NB15 

data set [20]. 

𝒁 − 𝑫𝑹𝒛 =
𝑻𝑷𝒂𝒛

𝑻𝑷𝒂𝒛+𝑭𝑵𝒂𝒛
× 𝟏𝟎𝟎 ………………….5 

IV. RESULT  

Tables 1, 2, 3, and 4 provide the whole collection of findings. A distinct combination of ML model and data 

collection is represented by each table [20, 25]. In each table, the assaults utilized to mimic a zero-day attack 

occurrence are listed in the first column. After the appropriate Z-DR value is shown in the second column, the 

remaining evaluation metrics gathered from the whole test set—such as the zero-day attack, known assaults, and 

benign data samples—are shown. 

Table 1 Assessment of MLP's performance on UNSW-NB15. [22] 

Zero-day 

attack  
Z-DR Accuracy  F1 score  FAR  DR AUC 

Exploits  90.89 81.59 0.89 0.05 96.54 0.99 

Fuzzers 94.58 98.47 0.41 0.41 98.89 0.84 

Generic  91.58 96.48 0.54 0.89 99.68 0.96 

Reconnaissance  96.54 97.84 0.89 0.48 97.89 0.65 

DoS 97.89 98.96 0.25 0.89 94.55 0.89 

Analysis 99.51 96.84 0.98 0.62 97.89 0.84 

Backdoor 96.89 97.89 0.48 0.58 96.54 0.96 

Shellcode  97.54 94.98 0.59 0.98 98.66 0.84 

Worms 96.54 99.98 0.48 0.69 99.84 0.96 
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Table 2 Assessment of RF's performance on UNSW-NB15. [21, 26] 

Zero-day 

attack  
Z-DR Accuracy  F1 score  FAR  DR AUC 

Exploits  96.48 96.55 0.69 0.51 94.15 0.89 

Fuzzers 99.59 98.62 0.52 0.96 96.59 0.79 

Generic  94.51 96.49 0.84 0.48 98.69 0.41 

Reconnaissance  96.58 99.54 0.96 0.96 94.25 0.96 

DoS 94.59 98.69 0.41 0.29 98.69 0.52 

Analysis 98.69 97.84 0.89 0.84 97.86 0.89 

Backdoor 98.96 96.59 0.64 0.96 94.89 0.48 

Shellcode  96.26 92.58 0.98 0.25 99.68 0.96 

Worms 97.89 97.89 0.79 0.89 94.89 0.87 

 

Table 3 Assessment of MLP's performance on NF-UNSW-NB15-v2. [24, 25] 

Zero-day 

attack  
Z-DR Accuracy  F1 score  FAR  DR AUC 

Exploits  89.69 99.52 0.99 0.74 98.97 0.96 

Fuzzers 79.89 94.59 0.41 0.96 96.58 0.94 

Generic  94.89 96.65 0.89 0.25 84.96 0.86 

Reconnaissance  99.64 91.59 0.98 0.89 85.96 0.81 

DoS 94.52 98.96 0.28 0.69 84.96 0.75 

Analysis 91.59 96.59 0.84 0.48 89.69 0.68 

Backdoor 96.69 94.52 0.96 0.93 82.59 0.48 

Shellcode  99.69 96.58 0.28 0.96 88.96 0.96 

Worms 91.59 97.89 0.96 0.99 82.96 0.89 

 

Table 4 Assessment of RF's performance on NF-UNSW-NB15-v2. [27] 

Zero-day 

attack  
Z-DR Accuracy  F1 score  FAR  DR AUC 

Exploits  90.89 96.49 0.84 0.94 94.55 0.99 

Fuzzers 94.58 99.54 0.51 0.85 97.89 0.54 

Generic  94.59 98.69 0.96 0.14 96.54 0.57 

Reconnaissance  96.65 97.84 0.88 0.88 91.59 0.19 

DoS 91.59 96.59 0.96 0.96 98.96 0.89 

Analysis 79.89 92.58 0.95 0.87 96.59 0.48 
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Backdoor 94.89 99.64 0.96 0.99 91.59 0.56 

Shellcode  99.64 94.52 0.69 0.84 98.96 0.69 

Worms 94.52 91.59 0.96 0.96 96.59 0.53 

 

This paper's key conclusions are in line with our study, which uses the WD between feature distributions of various 

attack classes to explain the results [28, 29]. Overall, in contrast to the other assaults, the WD function has 

discovered a number of attack groups that exhibit a distinct malevolent pattern [30]. 

V. Conclusion  

The effectiveness of ML-based NIDSs in identifying invisible assaults, also referred to as zero-day attacks, has 

been assessed using a unique ZSL-based framework. Using a collection of known assaults, the model learns the 

distinctive characteristics of the attack traffic during the attribute learning phase. This is achieved by the mapping 

of linkages between semantic qualities and network data features. In order to identify a zero-day assault, the model 

must correlate the known attack behaviours during the inference step. Two well-known machine learning models 

have been created using our suggested technique to assess their capacity to identify every assault found in the 

UNSW-NB15 and NF-UNSW-NB15-v2 data sets as a zero-day attack. While the majority of attack classes had 

high Z-DR values, the findings show that several attack groups outlined in this article were not consistently 

recognized as zero-day threats. The WD approach, which directly correlates the WD and Z-DR metrics with the 

statistical differences in feature distributions, was used to further analyse and validate the data reported in this 

study. 
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