Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

Bridging the Prompt-Code Gap: The Evolving Role of Developers in the
Age of Generative Al

Maheswara Rao AV
Author

Submitted: 01/12/2025 Revised: 18/12/2025 Published: 28/12/2025

Abstract

Generative Artificial Intelligence (GenAl) has rapidly transformed modern software engineering by enabling accelerated code
generation, automated debugging, multi-language translation, and architectural prototyping. Despite these capabilities, a
persistent disconnect remains between developer intent and Al-generated output—a phenomenon defined in this paper as the
Prompt—Code Gap. This gap becomes increasingly pronounced in complex, stateful, multi-platform environments such as
automated trading systems, where correctness, determinism, and system integrity are critical.

This research provides a comprehensive examination of the Prompt—Code Gap by integrating theoretical analysis with two
large-scale, real-world case studies involving TradingView Pine Script strategies, PHP-based cloud routers, MQLS5 Expert
Advisors, and end-to-end TradingView — Cloud — MTS5 execution workflows. Findings reveal that GenAl can accelerate
development by up to 10x%, yet its outputs frequently suffer from hallucinated functions, platform misunderstandings,
regression errors, and incomplete logic—especially when handling financial signals, symbol normalization, state machines, or
cross-platform trading logic.

Through an in-depth evaluation of each case study, this paper identifies key failure modes, architectural challenges, and human-
Al interaction patterns that shape GenAl-assisted development. It also highlights the indispensable role of human developers
in refining logic, designing system architecture, enforcing non-repainting constraints, implementing defensive programming,
and integrating platform-specific behaviors. The analysis demonstrates that while GenAl produces 50-70% of scaffolding
efficiently, the remaining 30-50%—including correctness, reliability, and domain-specific alignment—still requires human
expertise.

This study contributes a structured conceptual framework for understanding the Prompt—Code Gap, outlines best practices for
GenAl-assisted engineering, and proposes future research directions aimed at building context-aware, architecture-aligned,
and platform-specific Al copilots. The paper concludes that GenAl will not replace software engineers; instead, it will amplify
the capabilities of those who understand how to supervise, guide, and integrate Al-generated code into robust, real-world
systems.

1. Introduction

Generative Al (GenAl) tools such as ChatGPT and Copilot have transformed software engineering by enabling
rapid, conversational code generation across languages and platforms. While these capabilities accelerate
prototyping and reduce development effort, their limitations become evident in complex, real-world domains such
as financial automation and algorithmic trading.

Modern trading systems integrate multi-language components, distributed services, real-time data flows, and strict
platform constraints. In such environments, natural-language prompts often fail to convey full architectural
requirements, resulting in a misalignment between intended functionality and Al-generated code—a phenomenon
termed the Prompt—Code Gap. This gap manifests as logical inconsistencies, incorrect assumptions, platform-
specific errors, or silently failing logic, especially in systems requiring deterministic execution and precise cross-
platform synchronization.

Although GenAl is highly effective for scaffolding, refactoring, and accelerating development cycles, empirical
evidence shows that it struggles with deeper contextual reasoning, multi-platform translation, and state-dependent
logic. High-stakes domains such as TradingView Pine Script, PHP signal routers, and MT5 Expert Advisors

33
http://kuwaitjournals.com

Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

expose these weaknesses, often requiring substantial human intervention to correct or stabilize Al-generated
outputs.

This paper centers the Prompt—Code Gap as a fundamental challenge in Al-assisted engineering and examines it
through theory and four detailed case studies. The findings emphasize that despite significant productivity gains,
human expertise in architecture, debugging, and verification remains critical for building reliable and scalable
automated trading systems.

2. Literature Review

Generative Al has rapidly advanced automated code generation, with studies showing strong performance in
producing syntactically correct code, boilerplate structures, and debugging assistance (Peng et al., 2023). Research
also reports productivity gains of 30-60% in structured development tasks (McKinsey, 2023). Yet, in complex
multi-platform systems, GenAl’s limitations become more apparent—especially where stateful logic, strict
platform rules, and real-time constraints are involved.

Scholars note frequent hallucinations, missing platform-specific details, and partial solutions that require manual
correction (Yetistiren et al., 2023). LLMs also struggle with long-context consistency and cross-file reasoning
(Song et al., 2024), issues that are amplified in financial trading environments where small logic errors can cause
significant losses (Banh et al., 2025).

Research on multi-platform translation further shows that GenAl often overlooks critical constraints when moving
logic between Pine Script, PHP, Python, and MQLS5, forcing developers to adjust or rewrite Al-generated outputs
(Castor, 2024). This challenge aligns with the emerging concept of the Prompt—Code Gap, which describes the
disconnect between developer intent and Al-generated implementation. While LLMs may produce 50-70% of a
workable solution, the remaining critical portions rely heavily on human expertise.

Overall, existing studies highlight both the benefits and the inherent limitations of GenAl in high-stakes
engineering. Despite accelerating development, human architectural reasoning and domain-specific understanding
remain essential—particularly in automated trading systems that demand precision, determinism, and cross-
platform coherence.

3. Research Background and Context

The growing use of Generative Al in software engineering and automated trading has reshaped how complex
systems are built. As development shifts from manual coding to Al-assisted workflows, engineers must balance
theory, empirical behavior, and platform constraints. GenAl models rely on statistical correlations rather than
deterministic program reasoning, enabling fast code generation but limiting accuracy in tasks requiring strict
sequencing, state handling, or multi-system coordination.

Empirical evidence shows that GenAl performs well on isolated tasks but struggles when integrating with
databases, APIs, event-driven workflows, or time-sensitive trading logic. This mismatch—known as the Prompt—
Code Gap—emerges when Al-generated outputs fail to reflect the developer’s full intent or the system’s
operational context.

In multi-platform trading environments, GenAl must work across Pine Script, PHP/Python middleware, and
MQLS5—each with distinct execution rules. Al often overlooks these differences, leading to incomplete logic or
hallucinated functions. As a result, human supervision remains crucial for handling data types, indexing, real-time
execution, synchronization, and safety mechanisms such as duplicate suppression or idempotent processing.

While GenAl accelerates prototyping, it may introduce hidden technical debt if outputs are adopted without
verification. Engineers increasingly function as reviewers and integrators, ensuring architectural coherence rather
than writing all code manually.

In summary, this condensed analysis highlights GenAlI’s strengths in speed and scaffolding, its limitations in
complex multi-platform systems, and the continued necessity of human architectural judgment—especially in
high-precision automated trading environments.

34
http://kuwaitjournals.com

Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

4. The Prompt—Code Gap — Theory and Analysis
4. Theoretical and Empirical Foundations of the Prompt—Code Gap in GenAl-Assisted Engineering

Generative Al has introduced a profound shift in how software systems are conceived, authored, and deployed.
While traditional programming relied on explicit instruction, deterministic logic, and strict procedural execution,
GenAl enables a higher-level specification of intent through natural language. This shift introduces not only new
opportunities but also new challenges, particularly when Al-generated code must interact with complex multi-
platform systems such as algorithmic trading infrastructures. This section provides deeply expanded academic
analysis and is divided into multiple subsections to reflect theoretical foundations, empirical observations,
platform-level implications, and architectural reasoning tied to the Prompt—Code Gap.

4.1 Theoretical Foundations of GenAl in Software Engineering
4.1.1 Token-Based Reasoning vs. Program Execution

LLMs operate by predicting the statistically most probable next token, not by understanding program state or
execution semantics. This distinction is subtle yet crucial. When generating code, the model does not evaluate the
correctness of the logic, test for edge cases, or reason about the runtime behavior of a program. Instead, it
constructs outputs that Jook correct based on patterns seen during training. As a result, while GenAl often delivers
code that is syntactically plausible, the generated logic may not align with the intended architecture, platform
behavior, or operational constraints. This mismatch forms one of the deepest theoretical roots of the Prompt—Code
Gap.

4.1.2 Lack of Stateful System Understanding

Software systems evolve through time: they maintain state, accumulate data, interact with external services, and
follow deterministic workflows. LLMs have no persistent internal state between prompts; each request is
processed independently unless context is manually provided. In system engineering, however, proper functioning
depends on sequential actions, message ordering, transaction handling, or cross-module interactions. Without
native memory or execution tracing, GenAl cannot fully model or reason about state transitions. Thus, it struggles
with orchestrating end-to-end workflows such as trade execution sequences, candle-by-candle indicator
evaluation, or multi-step database operations.

5.1.3 Hidden Assumptions and Implicit Architectural Knowledge

Human developers often rely on mental models that capture design principles, system history, domain rules, and
business logic. These assumptions are rarely articulated explicitly in prompts. GenAl, lacking access to such tacit
knowledge, infers intent based on approximations drawn from training data. This often leads to oversimplification
or misinterpretation of architectural needs. For instance, the Al may assume an API exists because similar APIs
appear in training examples, even though the specific platform does not support them. Such inferred assumptions
widen the Prompt—Code Gap and necessitate human correction.

4.2 Empirical Observations from Real-World Engineering
4.2.1 Partial Correctness and Incomplete Outputs

In real-world implementation environments, Al-generated code frequently achieves partial correctness. For tasks
like boilerplate generation, syntax correction, or function stubs, GenAl performs exceptionally well. However,
when tasks involve nuanced logic, multi-module integration, or real-time constraints, the outputs begin to degrade.
Developers often find that while the model completes 50—70% of the code, the remaining portion—usually critical
edge cases or architectural logic—must be manually authored. This pattern is consistent across web development,
API design, Pine Script indicators, and MQLS5 Expert Advisors.

35
http://kuwaitjournals.com

Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

4.2.2 Iterative Prompt—Repair Cycles in Development

A consistent empirical pattern across all case studies is the iterative nature of Al-assisted coding. Developers
begin with an initial prompt, receive a partial solution, refine it, and then prompt for corrections. Instead of
converging linearly, Al sometimes introduces regressions—breaking logic that previously worked. This creates a
cycle where human developers must continually validate outputs, track inconsistencies, and preserve architectural
decisions that the Al forgets over time. These “prompt—repair cycles” illustrate that Al is not a deterministic
collaborator but a probabilistic generator requiring ongoing supervision.

4.2.3 Hallucination of Nonexistent or Invalid APIs

One of the most documented empirical phenomena in GenAl models is hallucination—the creation of APIs,
functions, or capabilities that do not exist. In the domain of trading systems, hallucination is frequent when the
model assumes that Pine Script can read user-drawn trendlines or that MQLS5 allows dynamic object introspection.
When confronted with underspecified prompts, Al often produces outputs that conform to generalized
expectations rather than platform constraints. This behavior increases complexity, as developers must identify and
remove hallucinated code before proceeding.

4.2.4 Loss of Long-Range Context and Design Consistency

Long development sessions often reveal a tendency for Al to “forget” earlier decisions. Variable names drift, logic
conventions change, and constraints provided in previous prompts are sometimes ignored in later responses. This
inconsistency makes it difficult to scale Al-generated code into multi-module architectures or systems requiring
strict interface contracts. Developers must therefore preserve and reintroduce context continuously, which
introduces cognitive overhead and highlights another dimension of the Prompt—Code Gap.

4.3 Multi-Platform Engineering Implications
4.3.1 Differences in Execution Models Across Platforms

Real-world trading systems consist of multiple platforms—each with a distinct execution model. Pine Script is
executed on every bar in a non-looping, immutable environment; cloud routers operate statelessly and rely on
REST semantics; and MQLS5 executes tick-by-tick with synchronous order handling. These differences are non-
trivial and must be respected in system design. GenAl often fails to model or differentiate such execution
paradigms, leading to code that appears correct but behaves unexpectedly. For example, logic that works in Pine
Script may fail when ported to MQLS due to differences in indexing and bar formation.

4.3.2 Type Systems, Indexing Models, and Data Constraints

Platforms such as PHP, Python, Pine Script, and MQLS each enforce their own internal rules regarding typing,
memory, and data referencing. LLMs frequently misjudge these rules when translating code across languages.
Off-by-one errors, mismatched array bounds, incorrect struct references, or null-handling discrepancies
commonly emerge. These issues are amplified in financial systems, where even minor deviations can alter trade
timing or risk exposure.

4.3.3 Practical Constraints That AI Cannot Infer Automatically
Several constraints are invisible to Al unless explicitly stated. For instance:
e Pine Script cannot access user-drawn drawings.
e MQLS5 requires pre-defined buffers for indicators.
e MTS5 rejects orders during invalid symbol sessions.
e PHP routers must maintain idempotency to prevent double execution.

GenAlT’s inability to infer these constraints autonomously underscores the need for human architectural oversight.

36
http://kuwaitjournals.com

Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

4.4 Technical Challenges in GenAlI-Assisted Trading System Development
4.4.1 Real-Time Constraints and Latency Sensitivity

Automated trading systems operate under stringent real-time requirements. Trade execution timing is influenced
by market volatility, liquidity fluctuations, and millisecond-level latency variations between TradingView, cloud
servers, and MT5 terminals. GenAl-generated code frequently overlooks these time-sensitive constraints because
the model is unable to simulate network delays, order routing times, or execution queues. As a result, Al may
generate logic that is theoretically correct but practically misaligned with the temporal behavior of financial
markets, such as assuming immediate order confirmations or failing to handle delayed webhook deliveries.
Developers must manually implement rate limiting, timeout handling, and retry logic to ensure resilient execution
across distributed components.

4.4.2 Determinism vs. Probabilistic Output

Al-generated code is inherently nondeterministic — different prompts, or even identical prompts, can yield
different outputs. This lack of determinism conflicts with the requirements of trading system engineering, where
reproducibility, predictability, and deterministic behavior are essential. A trading strategy must execute identically
across sessions and platforms; even slight deviations in logic can produce different trade entries or exits. The
introduction of probabilistic behavior through Al-generated variability requires developers to enforce strict
versioning, audit trails, and code freezes to maintain system integrity. Without these human-led safeguards, Al-
enabled pipelines risk producing inconsistent behavior in production environments.

4.4.3 Error Propagation and Silent Failures

One of the most dangerous aspects in the context of automated trading systems is silent failure — a scenario in
which the system appears to function normally but does not execute intended trades. Al-generated code is
susceptible to subtle logical errors such as incorrect symbol mappings, faulty variable scoping, or improper state
resets, which can propagate through multiple layers of the system. These issues often remain undetected until a
missed trade or unintended execution occurs in live markets. Human developers must implement multiple layers
of logging, telemetry, and validation to detect such conditions proactively. GenAl cannot autonomously design
such fail-safe mechanisms because it lacks contextual awareness of financial risk and operational expectations.

4.4.4 Data Integrity and Synchronization Challenges

Trading systems depend heavily on data consistency across various components — price feeds, webhook signals,
database tables, pending trade queues, and MT5 order histories. Al-generated code occasionally mishandles data
synchronization, such as inserting duplicate records, failing to delete stale entries, or misaligning database schema
relationships. These shortcomings are particularly evident in complex CRUD operations involving trades, where
race conditions or incomplete updates can compromise system reliability. Developers must therefore architect
robust synchronization logic, transactional safeguards, and atomic update mechanisms to guarantee consistency
— tasks that remain beyond the autonomous reasoning capability of current GenAl models.

4.5 Architecture-Level Reasoning and System Design Limitations
4.5.1 Distributed System Complexity Exceeds Al Inference Capabilities

Even advanced LLMs struggle to model the implicit architecture of a distributed trading system. A typical pipeline
involves request-response cycles across TradingView, cloud PHP routers, MySQL databases, and MT5 Expert
Advisors. Al-generated outputs rarely capture the interplay between these components, such as order status
transitions, synchronization between pending and executed trades, or management of asynchronous callbacks.
Human architects must define these workflows explicitly, as Al tends to produce localized solutions without
considering system-wide consequences. This is one of the strongest manifestations of the Prompt—Code Gap: the
gulf between local code generation and global architectural alignment.

37
http://kuwaitjournals.com

Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

4.5.2 Human-Only Capabilities in Domain-Specific Reasoning
Certain design decisions require deep domain familiarity that LLMs cannot replicate, such as:
e sclecting between bar-close and intrabar evaluation,
e determining optimal buffer indexing for Heiken Ashi calculations,
e designing position-management rules in MT5,
e enforcing idempotency in webhook processing,
e resolving symbol-mismatch issues (e.g., USTEC vs. USTECm),
e tuning performance for Pine Script execution on high-frequency charts.

These choices are not merely technical; they are strategic decisions based on the developer’s experience of market
behavior, platform limitations, and risk management principles. Al can assist in writing supporting code but
cannot autonomously make such decisions due to lack of experiential reasoning.

4.5.3 Lack of Awareness of Non-Functional Requirements (NFRs)

While Al can generate functional code, it does not inherently account for non-functional requirements such as
security, scalability, performance, auditability, or maintainability. For instance:

e A trading system must be secure against repeated webhooks, replay attacks, or invalid API keys.
e It must scale to multiple terminals and symbols without degrading performance.
e It must provide traceable logs for compliance and testing.

Al-generated code typically omits these considerations unless explicitly instructed. In contrast, human architects
embed these constraints throughout the system design process, demonstrating areas where Al’s applicability is
limited.

4.5.4 Bridging Logic: The Final 20-40% Only Humans Can Provide

A consistent theme across all real-world case studies is the necessity for human-authored "bridge code." This
refers to the custom logic that stitches together different modules, enforces business rules, handles exceptions,
and maintains consistent system state. Examples include:

e clearing stale pending trade rows,

e interpreting double signals from TradingView,

e recalculating trailing stop loss based on platform-specific rules,

e adjusting indicator computations to match cross-platform behavior.

This bridge code is rarely generated correctly by Al because it resides at the intersection of domain knowledge,
architectural design, and empirical behavior observed during live testing.

4.6 Cross-Platform Translation and Semantic Alignment
4.6.1 Semantic Drift in Code Conversion Across Languages

When Al translates logic across languages — for example, from Pine Script to MQLS — semantic drift frequently
occurs. This refers to subtle changes in meaning or behavior introduced unintentionally through translation. While
variable names and structures may appear correct, execution semantics differ significantly due to platform
architecture. For example, Pine Script recalculates full history on every bar, while MQLS5 handles data
incrementally. These differences cause logical drift, resulting in signal mismatches, misaligned calculations, or

38
http://kuwaitjournals.com

Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

inconsistent order triggers. Human intervention is required to validate, compare, and calibrate logic so both
platforms yield identical outcomes.

4.6.2 Event-Driven vs. Declarative vs. Imperative Models

TradingView Pine Script is declarative; MT5 is event-driven; PHP routers are procedural. GenAl struggles to
adapt logic between these paradigms because it lacks an internal model of control flow. Attempts to convert
strategies often lead to logical errors such as calculating indicators before buffer initialization or referencing future
bars implicitly. Human engineers must therefore redesign the logic flow manually to respect platform constraints,
demonstrating that code translation is not purely syntactical but fundamentally architectural.

4.6.3 Handling Platform Constraints and Execution Contexts
Each platform imposes strict constraints:
e Pine Script forbids dynamic loops and memory allocation.
e MQLS5 requires preallocated indicator buffers.
o PHP executes statelessly across requests.
e TradingView webhooks cannot be delayed or retried.

Al-generated solutions often violate these rules by suggesting unsupported APIs or invalid operations. This leads
to runtime errors or platform rejections. Experienced developers must rewrite or constrain logic to fit within these
constraints, further widening the Prompt—Code Gap.

4.6.4 Achieving Cross-Platform Fidelity in Trading Logic

Ensuring that a strategy behaves identically across platforms is one of the most demanding challenges. During the
case studies, identical Heiken Ashi formulas, breakout models, and trailing stop logic often produced different
results due to differences in timing, tick arrival, bar formation, and execution sequencing. Achieving a 99% cross-
platform match required manual inspection of charts, sample-by-sample comparison, and iterative refinement —
a task far beyond the autonomous abilities of GenAl.

4.7 Synthesis: Understanding the Prompt—Code Gap as a Central Engineering Limitation
4.7.1 Al Accelerates Development but Cannot Own Architecture

The real-world evidence from all case studies confirms that Al is invaluable in accelerating development,
generating boilerplate code, and producing quick drafts. Yet, architecture — the foundation of any large-scale
system — cannot be reliably generated by LLMs. Architecture requires holistic awareness of external systems,
operational constraints, and domain knowledge, which Al lacks.

4.7.2 Human Expertise as the Governing Layer

In every case, the human developer acted as the supervisor, corrector, designer, and system integrator. Al served
as a high-speed collaborator, but human reasoning provided the final direction, corrections, and validations
necessary for stable deployment. This symbiosis represents the long-term future of software engineering.

4.7.3 Why the Prompt—Code Gap Will Continue to Exist
The Prompt—Code Gap persists because Al lacks:

e experiential intuition,

o real-time feedback from system execution,

e awareness of risk or financial consequences,

e architectural understanding,

39
http://kuwaitjournals.com

Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

e stateful reasoning capabilities.

Until future models incorporate deeper semantic reasoning and dynamic simulation capabilities, this gap will
remain a defining engineering constraint.

4.7.4 Implications for GenAlI-Assisted System Design
Developers must treat Al as a cognitive accelerator — not an autonomous engineer. Proper usage involves:
e carefully crafted prompts,
e verification loops,
e modular integration,
e strong validation pipelines,
e human-authored bridge code.

This epistemological shift positions developers not as coders but as “Al supervisors” and “architectural
orchestrators.”

5. Case Study 1 — Engineering a Fully Automated Trading Pipeline Using TradingView, Cloud Webhooks,
and MT5S

1. Overview, Background, and Problem Context

This case study analyzes the accelerated development of a fully automated execution pipeline connecting
TradingView, a cloud-based PHP routing engine, and the MetaTrader 5 (MT5) execution terminal. The entire
system—typically requiring several weeks of architecture design, coding, and platform integration—was
completed within approximately ten hours using intensive Generative Al assistance. Automated trading
environments impose stringent requirements on latency, state synchronization, and platform-aware logic, making
them a strong testbed for evaluating the capabilities and limitations of GenAl. While TradingView provides
signals, the cloud router performs validation and dispatch, and MT5 executes trades, the system must maintain
coherence across asynchronous layers. The project revealed that GenAl could rapidly generate foundational code
structures but struggled to maintain consistent logic across languages, schemas, and platform constraints. The
primary objective was to create a production-ready system capable of validating and normalizing webhook alerts,
enforcing per-symbol idempotency, suppressing duplicate or stale trade instructions, managing a robust pending-
trade queue, and ensuring strict synchronization between cloud processing and MT5 execution cycles. The
development process highlighted the Prompt—Code Gap, showing that while Al accelerates code generation,
human expertise remains essential for ensuring architectural stability and cross-platform consistency.

2. System Architecture Overview

The automated trading pipeline consisted of three tightly integrated layers. The TradingView strategy served as
the signal-generation component, producing BUY and SELL alerts accompanied by structured JSON payloads.
These alerts were delivered to a PHP-based cloud router responsible for validating API credentials, normalizing
symbol formats to MT5-compatible naming rules, suppressing duplicate or stale signals, and inserting validated
trade instructions into a pending-trades queue backed by MySQL. The router also maintained comprehensive
event logs and execution histories. The execution layer resided in MetaTrader 5 through an Expert Advisor that
continuously polled the pending queue at high frequency. Upon receiving a new trade instruction, the EA executed
the order atomically, applied the required stop-loss and take-profit parameters, and returned a callback to the
router to confirm execution. The system further preserved execution integrity by preventing repeated or
unintended trades, ensuring that each signal resulted in a single, deterministic execution. Collectively, the layered
architecture formed a low-latency, closed-loop trading engine capable of operating continuously around the clock.

40
http://kuwaitjournals.com

Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

3. Pipeline Operations

The operational workflow followed a compact but highly coordinated sequence. TradingView triggered a
webhook containing the breakout or directional alert. The cloud router validated the payload, authenticated the
request, and applied symbol-normalization rules before purging any stale or duplicate instructions associated with
the same symbol. After validation, the router inserted the request into the pending-trades table. The MT5 Expert
Adpvisor polled the queue every 100-300 milliseconds, retrieved the next eligible trade, executed the order, and
immediately sent a callback with execution details. The router then updated the trade history and maintained state
consistency for subsequent alerts. This streamlined sequence provided deterministic signal flow and sub-second
execution latency under normal conditions.

4. Al-Assisted Development Process

The development process relied heavily on Generative Al for generating the structural components of the system.
Al produced initial drafts of webhook endpoints, JSON handlers, database schemas, polling loops, order-
execution routines, and duplicate-suppression logic. Despite this acceleration, numerous logical gaps surfaced. Al
frequently misinterpreted schema relationships, forgot earlier instructions, generated syntactically correct but
logically inconsistent code, and introduced regressions during iteration. Human developers performed extensive
refinements, including correcting SQL joins, stabilizing symbol-normalization logic, restructuring buffer
management within the EA, resolving race conditions, and enforcing idempotency. Through systematic review
and correction, human oversight increased the reliability of Al-generated components from roughly 50% to
approximately 90%, demonstrating GenAl’s value primarily as a scaffolding generator rather than a complete
system designer.

5. Technical Challenges

The project encountered several challenges attributable to the limitations of GenAl in multi-layer system
development. The Al was unable to maintain clean transitions across pending, executed, and cleared trade states,
resulting in inconsistent state synchronization. TradingView occasionally produced duplicate alerts, which Al-
generated logic failed to handle robustly, necessitating manual symbol-level cleanup rules. Polling loops created
by Al suffered from edge-case issues such as off-by-one errors, stale queue retrieval, and insufficient timeout
handling. Symbol normalization proved especially problematic, as the Al repeatedly forgot mapping conventions
(e.g., transforming USTEC to USTECm). Database duplication issues also emerged because Al-generated queries
preserved outdated records, making manual implementation of strict delete-before-insert rules necessary to ensure
idempotent trade processing. These challenges illustrated the gaps between Al-generated scaffolding and the rigor
required for a real-time trading environment.

6. Architectural Decisions and Human Intervention

Several human-led architectural decisions were essential to achieving a stable production system. The cloud router
was intentionally designed to remain stateless, delegating all persistent state handling to MTS5, which ensured
deterministic execution. Symbol-level idempotency was enforced to guarantee that only one pending trade existed
per instrument at any time. An aggressive purge logic was introduced to eliminate stale or duplicated alerts prior
to queue insertion. Poll-based execution was selected because MTS5 lacked efficient push-based communication
mechanisms. Human engineers also authored crucial bridge code, including schema refinements, comprehensive
duplicate-suppression functions, robust state-machine transitions, regression corrections, and custom race-
condition protection logic. Approximately 30—40% of the final system consisted of manually implemented logic
required to bind Al-generated components into a coherent, reliable production pipeline.

41
http://kuwaitjournals.com

Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

7. Outcomes and Performance

The completed system successfully automated the full TradingView-to-MTS5 trading workflow, achieving stable
sub-second execution latency and eliminating all instances of duplicate trades. The pipeline sustained continuous
24x7 operation with consistent behavior across all layers, supported by comprehensive logging and auditability.
The collaboration between Al-generated scaffolding and human architectural oversight resulted in a highly
efficient development process, compressing what traditionally requires 15-30 days of engineering effort into
roughly ten hours. This outcome demonstrates the effectiveness of hybrid Al-assisted development, where GenAl
accelerates implementation while human expertise ensures correctness, resilience, and platform-aligned
execution.

6. Case Study 2 — Multi-Platform Parallel-Channel Breakout System Using GenAl, Pine Script, Cloud
Routing, and MT5

1. Overview, Background, and Problem Context

This case study examines the development of a fully automated parallel-channel breakout trading system that
integrates TradingView for strategy logic, a PHP-based cloud router for signal validation, and MetaTrader 5
(MT5) for execution. The project demonstrates how Generative Al can accelerate multi-platform development by
generating initial code components, while also revealing the limitations of Al when applied to complex, stateful
trading systems requiring high determinism, cross-platform consistency, and strict timing control. Parallel-
channel breakout systems depend on stable channel geometry, slope coherence, and multi-factor confirmation
involving Renko directional alignment, ATR-based volatility validation, and volume participation thresholds.
Automating such a strategy across three heterogeneous platforms required Al to maintain consistent logic across
Pine Script, PHP, and MQL5—an area where discrepancies frequently emerged, highlighting the Prompt—Code
Gap. The goal of the project was to produce a reliable system capable of detecting breakout events, confirming
them with supporting indicators, transmitting deduplicated alerts, validating them on the cloud, and executing
trades through an MT5 Expert Advisor while maintaining full state synchronization.

2. System Architecture Overview

The automated breakout system was implemented as a coordinated, multi-platform pipeline. On TradingView, a
Pine Script strategy calculated channel boundaries, monitored slope stability, detected breakout events using
candle-close rules, and applied Renko, ATR, and volume filters before issuing a JSON-formatted webhook. The
cloud router received this alert, authenticated it, normalized the symbol to match MT5 naming conventions,
revalidated the breakout logic server-side, suppressed duplicate or stale signals, and inserted confirmed breakout
events into a pending-trades queue while maintaining a full audit trail. MTS5 handled the execution layer through
an Expert Advisor that polled the pending queue in short intervals, executed trades atomically, set stop-loss and
take-profit parameters, and returned callback confirmations to the cloud. A dedicated state-synchronization layer
maintained information on the last breakout direction, channel validity, and recent execution timestamps to
prevent unwanted re-entries into the same breakout leg. Together, these layers formed a closed-loop system
capable of transforming TradingView breakout detections into consistent, validated, and executable trading
actions on MTS5.

3. Pipeline Operations

The operational flow of the system followed a tightly coordinated sequence. TradingView first generated channel
geometry and verified breakout conditions based on directional closes, Renko trend alignment, ATR thresholds,
and volume filters. Once a valid breakout was detected, the strategy emitted a webhook containing all relevant

42
http://kuwaitjournals.com

Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

parameters. The cloud router parsed the payload, validated its integrity, normalized the symbol, eliminated
duplicates, and queued the breakout for execution. The MT5 Expert Advisor then polled the queue at high
frequency, retrieved the next eligible trade, executed it, and immediately communicated the execution status back
to the router. The router updated the trade history and synchronized the state-tracking variables to ensure the next
breakout event was processed correctly. This coordinated pipeline provided a seamless end-to-end flow with sub—
200 ms latency in most test scenarios.

4. Al-Assisted Development Process

Generative Al played a central role in rapidly producing initial drafts of the TradingView strategy, PHP
middleware, and MQLS execution logic. It generated Pine Script code for detecting channel geometry, validating
breakout conditions, and preparing webhook alerts. For the cloud router, Al provided endpoint templates, JSON
parsers, symbol-mapping logic, and MySQL integration code. For MT35, it produced polling loops, order-sending
functions, and basic deduplication routines. However, Al-generated code revealed inconsistencies across
platforms. Logical discrepancies such as mismatched variable names, missing edge-case conditions, incorrect
slope handling, and incomplete confirmation criteria surfaced repeatedly. Al also made incorrect assumptions
about Pine Script’s drawing model, PHP’s array-handling semantics, and MQLS5’s strict typing. Human
intervention was required to realign logic across all platforms, correct execution rules, restore consistency, and
ensure compatibility with real-time trading requirements.

5. Technical Challenges

Several technical challenges emerged due to GenAl’s inability to maintain logical consistency across
heterogeneous environments. Channel geometry detection became unstable as the Al struggled to reproduce
identical boundary and slope rules between Pine Script and PHP. Breakout confirmation logic was often
incomplete, with Al omitting Renko alignment, ATR thresholds, or volume constraints. Symbol normalization
repeatedly broke, as GenAl forgot mapping conventions between TradingView and MT5. Duplicate breakout
alerts presented further difficulties because Al-generated logic could not reliably suppress intrabar signals or purge
stale queue entries. State synchronization also proved problematic; Al failed to track breakout direction, manage
reversal scenarios, or prevent repeated entries during the same trend leg. Human engineering provided the
corrective framework, including custom state machines, complete breakout-validation matrices, stable symbol-
mapping rules, and robust duplicate-suppression algorithms.

6. Architectural Decisions and Human Intervention

To ensure system stability, several architectural decisions were made manually. Unstable channels with
insufficient age or excessive slope deviations were rejected. Breakouts were validated using a five-factor
confirmation matrix that assessed boundary interaction, Renko direction, ATR volatility, volume confirmation,
and structural alignment with previous swing points. Cross-layer validation was adopted as a mandatory rule,
requiring every breakout to pass checks in Pine Script, PHP, and MQLS5 before execution. Human engineers
rewrote channel geometry functions, corrected drawing logic in Pine Script, rebuilt symbol-mapping rules in PHP,
and reconstructed the MQLS execution engine with atomic execution, retry loops, callback idempotency, and
precise order sizing. These manual contributions—representing approximately 30—40% of the final codebase—
were essential in converting fragmented Al outputs into a reliable multi-platform system.

7. Outcomes and Performance

The final system achieved real-time, end-to-end breakout detection and execution with sub—200 ms latency.
Duplicate signals were reduced by more than 98%, and the Renko confirmation layer significantly improved

43
http://kuwaitjournals.com

Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

breakout accuracy. The system maintained stable synchronization across TradingView, PHP middleware, and
MTS5, ensuring that each breakout event translated into a single, precise execution. Despite the heavy use of
Generative Al in the initial development phase, human architectural oversight ultimately ensured system integrity,
consistency, and production-grade reliability.

7. Discussion

The findings across all case studies reveal that the integration of Generative Al into large-scale automated trading
systems introduces a unique blend of acceleration and complexity. While GenAl significantly reduces
development time by generating code templates, structural modules, and strategy prototypes, its limitations
become increasingly evident when the system must operate across heterogeneous platforms such as TradingView,
PHP middleware, and MT5 execution environments. The core challenge emerges from the Prompt—Code Gap,
where Al-generated outputs lack precise temporal reasoning, state awareness, and cross-platform contextual
understanding. This gap is especially visible in recursive calculations, multi-timeframe synchronization, and logic
that depends on bar-based transitions or live feed behavior—areas where GenAl models often make deterministic
but incorrect assumptions.

Empirical observations further demonstrate that automated trading workflows require high-fidelity control over
candle formation rules, execution timing, latency parameters, and error suppression mechanisms. These are deeply
intertwined with platform-specific behaviors, making them difficult for GenAl to infer without explicit
architectural guidance. Multi-platform engineering thus becomes a layered problem: signals must remain
consistent across TradingView’s bar-indexed environment, PHP’s stateless HTTP layers, and MT5’s tick-driven
EA execution cycle. GenAl can assist in drafting components of this pipeline, but the orchestration, state
synchronization logic, and error-handling framework still require human-led architectural reasoning.

Additionally, the case studies highlight the importance of human—AlI collaborative workflows. When human
architects validate, refine, or override GenAl-generated components, system reliability increases dramatically.
This hybrid development model not only mitigates logic drift but also enhances maintainability by enforcing
consistent design rules across layers. The insights indicate that GenAl is most effective as a force multiplier—
accelerating code generation and ideation—while human expertise remains essential for correctness, stability, and
domain-specific optimization. Overall, the discussion underscores that successful deployment of GenAl-assisted
trading systems depends on synergistic collaboration between Al automation and human architectural oversight.

8. Open Research Areas and Future Studies

Several research gaps remain in the use of GenAl for multi-platform automated trading. A key challenge is
developing cross-platform consistency mechanisms that allow Al models to maintain identical logic across Pine
Script, PHP, Python, and MQLS without drifting or introducing regressions. Future work should also focus on
context-stable AI models that can retain long-term architectural constraints such as state behavior, timing rules,
and execution dependencies.

Another important direction is the creation of Al-driven validation and simulation frameworks capable of
detecting inconsistencies, race conditions, or duplicate-signal risks before deployment. Integrating GenAl with
reinforcement learning, agentic workflows, and market digital twins presents further opportunities for
improving strategy robustness.

Overall, future studies should explore hybrid autonomous architectures in which GenAl handles rapid code
generation while human-designed oversight layers enforce determinism, safety, and regulatory compliance. This
approach offers the most realistic path toward reliable GenAl-assisted trading systems.

9. Conclusion and Future outlook

This research shows that Generative Al is a powerful accelerator for building multi-layer automated trading
systems, but it remains limited in handling the architectural depth, platform constraints, and deterministic logic
required for real-world financial execution. While GenAlI efficiently generates scaffolding, templates, and initial

44
http://kuwaitjournals.com

Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

strategy logic, it struggles with cross-platform consistency, timing precision, and state management—revealing a
persistent Prompt—Code Gap between Al-generated code and production-grade requirements.

Human expertise is still essential for designing execution pipelines, aligning TradingView — Cloud — MTS5
logic, managing bar transitions, enforcing idempotency, and mitigating race conditions. GenAl can speed up
development, but it cannot independently ensure correctness, reliability, or risk-aware behavior.

Looking forward, future GenAl systems may offer deeper architectural memory, cross-language consistency
checks, and platform-aware reasoning to reduce manual intervention. However, the most effective path remains a
hybrid model where Al accelerates creation and humans ensure structural integrity. In this collaborative
framework, GenAl functions as a force multiplier—enabling faster iteration, improved system quality, and more
scalable trading automation when guided by experienced developers.

References

Peng et al., 2023 — https://arxiv.org/abs/2302.06590

Yetistiren et al., 2023 — https://arxiv.org/abs/2304.10778

Pandey et al., 2024 — https://arxiv.org/abs/2406.17910

Banh et al., 2025 — https://www.sciencedirect.com/science/article/pii/S0950584925000904
Song et al., 2024 — https://arxiv.org/abs/2410.02091

McKinsey, 2023 — https://mckinsey.com

Codacy, 2024 — https://blog.codacy.com

45
http://kuwaitjournals.com

