Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

An Analytical Survey of Cyberbullying Detection Using Machine
Learning Algorithms

Nikesh Aote!, Sheron Sheikh?, Soheb Pathan’, Sohel Sayyad*, Akash Bisen’, Sumit kalbande®
1 Assistant Prof, Computer science and engineering
Priyadarshini college of engineering, Nagpur, India

2Computer science and engineering,
Priyadarshini college of engineering, Nagpur, India
3Computer science and engineering,
Priyadarshini college of engineering, Nagpur, India
“Computer science and engineering,
Priyadarshini college of engineering, Nagpur, India
SComputer science and engineering,
Priyadarshini college of engineering, Nagpur, India
SComputer science and engineering,

Priyadarshini college of engineering, Nagpur, India
Submitted: 03/12/2025 Revised: 15/12/2025 Published: 30/12/2025

Abstract

Moderating harmful text directly from dynamic desktop screens requires converting pixels into textual content reliably
and classifying that text accurately, all under tight latency and privacy constraints. This survey integrates research across
three pillars to guide the design of on-device moderation systems: (i) optical character recognition (OCR) for heterogeneous
user interfaces (Uls), including neural (LSTM-based) OCR, scene text detectors, and sequence recognition models; (ii)
abusive/toxic language detection methods that range from lexicon rules to supervised transformers and zero-shot
classification framed as natural language inference (NLI); and (iii) system-level design strategies, such as high-throughput
screen capture, region-of-interest (ROI) scheduling, frame skipping, GPU-aware inference, and efficient overlay
compositing. We prioritized peer-reviewed venues and canonical documentation in selecting sources. The review finds that:
OCR fidelity is the principal ceiling for downstream moderation; hybrid pipelines combining lexicons with context-aware
transformers typically outperform single-signal approaches; and zero-shot models broaden label coverage and cross-lingual
generalization but require threshold calibration and bias auditing. Significant gaps remain in handling code-mixed Hindi—
English text, stabilizing OCR on stylized Ul renderings, and mitigating unintended biases across user groups. The survey
concludes with practical engineering guidance, an evaluation blueprint (accuracy, latency, and fairness), and research
directions for robust, privacy-preserving on-device moderation [1]-[14].

1. Introduction

On-device moderation of visual interfaces is fundamentally different from filtering server-side logs or API
payloads. Desktop applications present text within heterogeneous Uls—browsers, chats, productivity tools—
where fonts, backgrounds, languages, and rendering effects (e.g., anti-aliasing, transparency) vary widely. A
workable moderation pipeline must therefore: (1) capture screen pixels efficiently; (2) extract text reliably with
OCR; and (3) assess toxicity with calibrated precision while preserving real-time responsiveness.

Advances in OCR—from pattern-based recognition to LSTM-based neural engines—have substantially
improved line-level accuracy and script coverage [1], [2]. Scene text detectors offer fast, accurate region
proposals that improve recognition in cluttered scenes [3]. Sequence recognition models (e.g., CRNN with CTC)

http://kuwaitjournals.com 46



Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

further increase robustness to variable-length words and distortions [4]. In parallel, moderation approaches have
evolved from lexicon rules to supervised transformers (context-aware toxicity scoring) and zero-shot NLI-based
classification for label flexibility and cross-lingual generalization [5]—[8]. Surveys on hate speech underscore
enduring challenges: ambiguity, obfuscation, domain shift, and fairness [9], [10]. For Hindi and Indo-European
languages, HASOC-style resources highlight code-mixed complexities that stress both OCR and language
models [11].

This survey synthesizes these bodies of work for an engineering audience. It emphasizes practical choices—
ROI scheduling, frame skipping, GPU utilization, overlay design—that materially influence end-to-end
performance and user experience.

2. Methodology

- Scope and focus: Works directly applicable to on-screen OCR and textual toxicity detection, with emphasis
on multilingual and code-mixed contexts, and real-time system design.

- Sources: IEEE Xplore, CVF Open Access (CVPR), ACL Anthology/EMNLP, ACM Digital Library, arXiv,
and official framework/model documentation for widely adopted tools.

- Keywords: “Tesseract LSTM OCR,” “EAST scene text detector,” “CRNN recognition CTC,” “toxic-bert,”
“DeBERTaV3,” “XNLI,” “zero-shot classification,” “hate speech survey NLP,” “HASOC Hindi dataset,”
“Python MSS,” “UpdateLayeredWindow.”

- Inclusion criteria: Technical relevance to OCR on heterogeneous Uls; evidence of robustness across
languages; moderation methods deployable on device; and canonical system-level references for screen
capture/overlays.

- Exclusion criteria: Non-text modalities (e.g., audio-only); highly domain-specific corpora with narrow
applicability; works lacking methodological transparency.

- Analysis approach: Thematic synthesis (OCR — moderation — system), identification of
strengths/weaknesses, discussion of trade-offs and deployment concerns, and alignment with real-time
constraints.

3. Literature Review
3.1 OCR Engines for Heterogeneous Uls

Neural OCR has matured with the incorporation of recurrent networks, as in modern Tesseract releases,
which improved line-level recognition and Unicode coverage compared to legacy engines [1], [2]. For on-screen
content, three factors are particularly salient:

- Language hints: Specifying multiple languages (e.g., Hindi + English) reduces script-level confusion and
improves tokenization.

- Preprocessing: Lightweight steps (grayscale, de-noising, adaptive thresholding, contrast stretching)
stabilize recognition for anti-aliased, low-contrast text common in Uls.

- Region selection: Constraining OCR to likely text regions reduces false positives and computational
overhead.

3.2 Scene Text Detection and Localization

EAST (Efficient and Accurate Scene Text) demonstrates a fast and accurate method for localizing text via
fully convolutional networks and geometry predictions [3]. The detector-before-OCR paradigm is attractive for
screenshots because it:

- Filters background clutter, images, and icons that confound OCR;

- Improves effective OCR accuracy by presenting text-dominant crops;

http://kuwaitjournals.com 47



Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

- Enables confidence-weighted cascades where weak proposals are downweighted or ignored.

3.3 Sequence Recognition Models

CRNN-style recognizers view text as sequences and use CTC decoding to avoid explicit character
segmentation [4]. This design improves robustness to distortions, variable-length tokens, and imprecise character
boundaries—conditions frequent in desktop Uls with scaling and anti-aliasing. Compact CRNN variants and
quantized deployments are increasingly practical for desktop-time constraints.

3.4 Lexicon-Based Toxicity Detection

Lexicon filters remain useful for explicit slurs and controlled vocabularies. Strengths include high precision
on known abusive terms, straightforward maintenance of variants/transliterations, and predictable behavior.
Weaknesses include lack of context (e.g., quotes, negations, satire) and vulnerability to obfuscation. Practical
implementations incorporate cooldowns to prevent repeated triggers for persistent on-screen text and
normalization to handle lookalike characters.

3.5 Supervised Transformers for Toxicity

Transformer-based classifiers trained on large annotated corpora (e.g., Jigsaw challenges) provide context-
aware assessments that often outperform lexicon rules alone [5]. Deployment considerations include:

- Threshold calibration: Selecting operating points per label to balance false positives and recall for the
application’s risk profile.

- Domain shift: UI text can differ from social media comments; prompt/label engineering or light adaptation
can reduce mismatch.

- Calibration and interpretability: Confidence scores benefit from post-hoc calibration; explanations can
build user trust.

3.6 Zero-Shot Classification via NLI

Zero-shot classification reframes detection as an NLI task: each label is a hypothesis, and the model
evaluates entailment given the input text [8]. DeBERTaV3 improves efficiency and downstream performance
with ELECTRA-style pretraining and gradient-disentangled embedding sharing [6]. Cross-lingual generalization
is frequently evaluated with XNLI [7]. Operationally:

- Label engineering matters: Clear, concise label descriptions typically improve results.

- Multi-label configuration: Independent thresholds per label capture overlapping categories (e.g., “insult,”
“hate,” “threat”).

- Calibration: Per-label calibration and threshold sweeps stabilize performance across domains and
languages.

3.7 Multilingual and Code-Mixed Contexts

HASOC-style tasks and datasets highlight the complexities of Hindi and related Indo-European languages
[11]. Key observations:

- Code-mix and transliteration: Mixed scripts (Devanagari/Latin) and creative spellings stress both OCR
and classifiers.

- Annotation ambiguity: Cultural nuances and differing guidelines complicate labels’ boundaries, affecting
reliability.

- Domain mismatch: Social media datasets may not reflect desktop Uls; collecting representative evaluation
samples is essential for deployment.

http://kuwaitjournals.com 48



Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

3.8 System-Level Components for Real-Time Use

- High-throughput capture: MSS is designed for fast, cross-platform screen grabbing with minimal overhead
[12].

- Efficient overlays: Windows layered windows (UpdateLayeredWindow) support per-pixel alpha
composition, enabling blur/mask overlays without forcing repaints of underlying applications [13].

- Practical Ul: Toolkits like Kivy/KivyMD can present status, toggles, notifications, and logs with minimal
boilerplate and acceptable performance [14].

- Scheduling and throttling: ROI grid sweeps and frame skipping provide predictable compute budgets at
stable latencies.

- Hardware utilization: GPU offload can reduce inference time for transformers; otherwise, quantization and
batching are effective on CPU.

4. Comparative Analysis and Trade-offs
4.1 OCR Design Choices

- Detector-before-OCR vs. direct OCR: A detector-first pipeline (e.g., EAST then OCR) reduces clutter and
boosts OCR accuracy at the cost of an extra model stage. Direct OCR on the whole frame is simpler but pays in
accuracy and compute.

- LSTM OCR vs. CRNN recognition: LSTM-based OCR is convenient and widely available; CRNNs can
outperform in challenging conditions if trained/tuned, but add model management complexity.

- Preprocessing depth: Aggressive preprocessing can yield gains on anti-aliased or low-contrast Ul text but
risks removing weak strokes if not tuned.

4.2 Moderation Logic
- Lexicon-only: High precision for explicit terms, low recall for implicit/obfuscated cases.

- Transformer-only: Context-aware with better recall, but can over-flag without careful thresholds and
calibration.

- Hybrid: Combining lexicon cues with transformers (and zero-shot augmentation) typically increases
reliability, especially when outputs are fused with cooldowns and multi-frame confirmation.

4.3 Zero-Shot Advantages and Caveats

Zero-shot models facilitate new labels and cross-lingual scenarios without fine-tuning. However,
performance depends on label phrasing, domain similarity, and multilingual coverage. Per-label thresholds and
simple calibration (e.g., temperature scaling) substantially improve stability.

4.4 Real-Time Responsiveness

ROI scheduling, frame skipping, and micro-batching text for inference are reliable ways to maintain
responsiveness. GPU usage, where available, helps transformers; CPU-only deployments benefit from quantized
models and tokenizer reuse.

5. Discussion
5.1 Emerging Trends

- OCR robustness is foundational. Scene text detection plus strong sequence recognition is steadily
becoming standard for noisy or cluttered scenes.

- Hybrid moderation is the norm. Stacking lexicon hits with transformer scores (and zero-shot labels) yields
better coverage and resilience to obfuscation while allowing guardrails such as cooldowns.

http://kuwaitjournals.com 49



Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

- Tooling maturity matters. Standardized libraries for capture and overlays (MSS, layered windows) reduce
engineering risk, while well-documented model hubs streamline deployment.

5.2 Conflicting Results and Reconciliation

- Precision vs. recall: Lexicon filters are precise yet brittle; transformers are more inclusive but can over-
flag. This points to per-label thresholding and hybrid confirmation.

- Language and domain shifts: English-only models degrade on code-mixed Hindi—English. Multilingual
checkpoints and small curated evaluation sets aligned with the deployment domain narrow the gap.

5.3 Implications for Engineering
- Add a text detector if OCR misses are high on cluttered Uls.

- Normalize aggressively post-OCR (Unicode normalization, simple transliteration mapping, digit/letter
lookalike replacements) to recover lexicon hits.

- Adopt per-label thresholds and apply cooldowns to minimize alert fatigue.

- Implement an evaluation loop (see Section 6) and periodically recalibrate thresholds using new data.
6. Evaluation Blueprint
6.1 Datasets

- Internal samples: Curate consented screenshots representative of target Uls and languages. Ensure
coverage of code-mixed Hindi—English and stylized fonts.

- Public resources: Use multilingual datasets (e.g., HASOC) for reference baselines while noting domain
mismatch [11].

6.2 Metrics
- OCR: Character error rate (CER), word accuracy, script-specific breakdowns (Hindi vs. English).

- Classification: Precision/recall/F1 per label, ROC-AUC and PR-AUC, and expected calibration error
(ECE) for probability outputs.

- System: End-to-end latency (capture — decision), frames per second, CPU/GPU utilization and memory
footprint.

- Fairness: Group-wise false positive/negative rates across language and identity slices, parity/equalized
odds analyses [9], [10].

6.3 Experimental Protocols

- Ablations: No detector vs. EAST-before-OCR; lexicon-only vs. transformer-only vs. hybrid; zero-shot
label phrasing variants.

- Threshold sweeps: Construct precision—recall curves for each label; select operating points based on
application risk tolerance.

- Robustness: Stress-test font changes, scaling, low-contrast text, translucency, and background motion
reflective of modern Uls.

7. Ethical, Privacy, and Safety Considerations

- On-device inference: Prefer local processing to protect user data; if screenshots must be persisted, limit
retention and apply redactions.

http://kuwaitjournals.com 50



Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

- Transparency and control: Provide notifications, explain detections, and allow users to override or whitelist
cases.

- Bias auditing: Track disparities across language and identity slices; publish summaries and incorporate
feedback loops for continuous improvement.

- Responsible defaults: Calibrate thresholds conservatively for sensitive categories and log uncertain cases
for offline review rather than immediate enforcement.

8. Limitations and Future Work

- Code-mixed robustness: Develop OCR post-correction tailored to Hindi—English mixes; evaluate
multilingual adapters or small-scale fine-tuning on representative samples.

- Calibration and bias: Use temperature scaling or isotonic regression; conduct periodic fairness audits with
updated evaluation slices.

- Efficiency: Explore distilled/quantized transformers; cache tokenization and consider micro-batching
across frames; use GPU where available.

- OCR—moderation co-design: Investigate joint training (or cascaded learning) where OCR outputs are
refined toward moderation-aware vocabularies.

9. Conclusion

A reliable on-screen moderation stack emerges from the confluence of robust OCR, context-aware
classification, and careful system engineering. The literature indicates that detector-enhanced OCR pipelines
materially reduce recognition errors on cluttered Uls, while hybrid moderation—fusing lexicon cues with
transformer and zero-shot signals—improves coverage and resilience to obfuscation. Real-time responsiveness
is achieved through ROI scheduling, frame skipping, and hardware-aware inference. Finally, privacy and fairness
are not afterthoughts: calibration, bias auditing, and user controls are essential for responsible deployment.
Continued progress on code-mixed language handling, compact multilingual models, and moderation-aware
OCR refinement will further stabilize real-world systems.

Acknowledgment

We thank the open-source communities and maintainers whose tools and documentation made this work
possible, including the contributors to Tesseract OCR, the Hugging Face Transformers ecosystem,
Kivy/KivyMD, and Python MSS, as well as the authors of platform guidance and APIs documented by
Microsoft. We are grateful to the organizers and curators of multilingual toxicity resources (e.g., HASOC) for
providing benchmarks that inform research on Hindi and code-mixed content.

We also appreciate the feedback and practical insights from colleagues and early testers who helped refine
design choices for region-of-interest scheduling, threshold calibration, and user-centric notifications. Their input
improved the clarity of our evaluation blueprint and strengthened our emphasis on fairness, privacy, and
real-time responsiveness.

This work did not receive any specific grant from funding agencies in the public, commercial, or
not-for-profit sectors. Any remaining errors are our own.

References

[1] R. Smith, “An Overview of the Tesseract OCR Engine,” in Proc. ICDAR, 2007. [Online]. Available:
https://ieeexplore.ieee.org/document/4376991/

[2] Tesseract OCR, “4.0 with LSTM,” GitHub Docs. Accessed: Oct. 9, 2025. [Online]. Available:
https://github.com/tesseract-ocr/tesseract/wiki/4.0-with-Istm

[3] X. Zhou et al., “EAST: An Efficient and Accurate Scene Text Detector,” in Proc. CVPR, 2017. [Online].
Available:

http://kuwaitjournals.com 51



Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

https://openaccess.thecvf.com/content _cvpr 2017/papers/Zhou EAST An_ Efficient CVPR 2017 paper.
pdf

[4] B. Shi, X. Bai, and C. Yao, “An End-to-End Trainable Neural Network for Image-Based Sequence Recognition
and Its Application to Scene Text Recognition,” arXiv:1507.05717, 2015. [Online]. Available:
https://arxiv.org/abs/1507.05717

[5] Unitary Al, “unitary/toxic-bert,” Hugging Face model card. Accessed: Oct. 9, 2025. [Online]. Available:
https://huggingface.co/unitary/toxic-bert

[6] P. He, X. Liu, J. Gao, and W. Chen, “DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training
with Gradient-Disentangled Embedding Sharing,” arXiv:2111.09543, 2021. [Online]. Available:
https://arxiv.org/abs/2111.09543

[7] A. Conneau et al., “XNLI: Evaluating Cross-lingual Sentence Representations,” in Proc. EMNLP, 2018.
[Online]. Available: https://aclanthology.org/D18-1269/

[8] Hugging Face, “What is Zero-Shot Classification?” Docs. Accessed: Oct. 9, 2025. [Online]. Available:
https://huggingface.co/tasks/zero-shot-classification

[9] P. Fortuna and S. Nunes, “A Survey on Automatic Detection of Hate Speech in Text,” ACM Computing
Surveys, 2018. [Online]. Available: https://dl.acm.org/doi/10.1145/3232676

[10] A. Schmidt and M. Wiegand, “A Survey on Hate Speech Detection using NLP,” in Proc. SociaNLP@EACL,
2017. [Online]. Available: https://aclanthology.org/W17-1101/

[11] HASOC, “HASOC 2019 Dataset,” FIRE Shared Task. Accessed: Oct. 9, 2025. [Online]. Available:
https://hasocfire.github.io/hasoc/2019/dataset.html

[12] Python MSS, “Welcome to Python MSS’s documentation!” Accessed: Oct. 9, 2025. [Online]. Available:
https://python-mss.readthedocs.io/

[13] Microsoft, “UpdateLayeredWindow function (winuser.h),” Learn Docs. Accessed: Oct. 9, 2025. [Online].
Available: https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-updatelayeredwindow

[14] KivyMD, “Getting Started,” Documentation. Accessed: Oct. 9, 2025. [Online]. Available:
https://kivymd.readthedocs.io/en/latest/getting-started/

http://kuwaitjournals.com 52



