
Kuwait Journal of Advanced Computer Technology  

ISSN: 2984-7907 

Vol 4 Issue 1 (2026) 

 

46 http://kuwaitjournals.com 

An Analytical Survey of Cyberbullying Detection Using Machine 

Learning Algorithms 

 

Nikesh Aote1, Sheron Sheikh2, Soheb Pathan3, Sohel Sayyad4, Akash Bisen5, Sumit kalbande6 

1Assistant Prof, Computer science and engineering 

Priyadarshini college of engineering, Nagpur, India 

2Computer science and engineering, 

Priyadarshini college of engineering, Nagpur, India 

3Computer science and engineering, 

Priyadarshini college of engineering, Nagpur, India 

4Computer science and engineering, 

Priyadarshini college of engineering, Nagpur, India 

5Computer science and engineering, 

Priyadarshini college of engineering, Nagpur, India 

6Computer science and engineering,  

Priyadarshini college of engineering, Nagpur, India 

 

Submitted: 03/12/2025          Revised: 15/12/2025          Published: 30/12/2025 

 

Abstract 

Moderating harmful text directly from dynamic desktop screens requires converting pixels into textual content reliably 

and classifying that text accurately, all under tight latency and privacy constraints. This survey integrates research across 

three pillars to guide the design of on-device moderation systems: (i) optical character recognition (OCR) for heterogeneous 

user interfaces (UIs), including neural (LSTM-based) OCR, scene text detectors, and sequence recognition models; (ii) 

abusive/toxic language detection methods that range from lexicon rules to supervised transformers and zero-shot 

classification framed as natural language inference (NLI); and (iii) system-level design strategies, such as high-throughput 

screen capture, region-of-interest (ROI) scheduling, frame skipping, GPU-aware inference, and efficient overlay 

compositing. We prioritized peer-reviewed venues and canonical documentation in selecting sources. The review finds that: 

OCR fidelity is the principal ceiling for downstream moderation; hybrid pipelines combining lexicons with context-aware 

transformers typically outperform single-signal approaches; and zero-shot models broaden label coverage and cross-lingual 

generalization but require threshold calibration and bias auditing. Significant gaps remain in handling code-mixed Hindi–

English text, stabilizing OCR on stylized UI renderings, and mitigating unintended biases across user groups. The survey 

concludes with practical engineering guidance, an evaluation blueprint (accuracy, latency, and fairness), and research 

directions for robust, privacy-preserving on-device moderation [1]–[14]. 

1. Introduction 

On-device moderation of visual interfaces is fundamentally different from filtering server-side logs or API 

payloads. Desktop applications present text within heterogeneous UIs—browsers, chats, productivity tools—

where fonts, backgrounds, languages, and rendering effects (e.g., anti-aliasing, transparency) vary widely. A 

workable moderation pipeline must therefore: (1) capture screen pixels efficiently; (2) extract text reliably with 

OCR; and (3) assess toxicity with calibrated precision while preserving real-time responsiveness. 

Advances in OCR—from pattern-based recognition to LSTM-based neural engines—have substantially 

improved line-level accuracy and script coverage [1], [2]. Scene text detectors offer fast, accurate region 

proposals that improve recognition in cluttered scenes [3]. Sequence recognition models (e.g., CRNN with CTC) 
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further increase robustness to variable-length words and distortions [4]. In parallel, moderation approaches have 

evolved from lexicon rules to supervised transformers (context-aware toxicity scoring) and zero-shot NLI-based 

classification for label flexibility and cross-lingual generalization [5]–[8]. Surveys on hate speech underscore 

enduring challenges: ambiguity, obfuscation, domain shift, and fairness [9], [10]. For Hindi and Indo-European 

languages, HASOC-style resources highlight code-mixed complexities that stress both OCR and language 

models [11]. 

This survey synthesizes these bodies of work for an engineering audience. It emphasizes practical choices—

ROI scheduling, frame skipping, GPU utilization, overlay design—that materially influence end-to-end 

performance and user experience. 

2. Methodology 

- Scope and focus: Works directly applicable to on-screen OCR and textual toxicity detection, with emphasis 

on multilingual and code-mixed contexts, and real-time system design. 

- Sources: IEEE Xplore, CVF Open Access (CVPR), ACL Anthology/EMNLP, ACM Digital Library, arXiv, 

and official framework/model documentation for widely adopted tools. 

- Keywords: “Tesseract LSTM OCR,” “EAST scene text detector,” “CRNN recognition CTC,” “toxic-bert,” 

“DeBERTaV3,” “XNLI,” “zero-shot classification,” “hate speech survey NLP,” “HASOC Hindi dataset,” 

“Python MSS,” “UpdateLayeredWindow.” 

- Inclusion criteria: Technical relevance to OCR on heterogeneous UIs; evidence of robustness across 

languages; moderation methods deployable on device; and canonical system-level references for screen 

capture/overlays. 

- Exclusion criteria: Non-text modalities (e.g., audio-only); highly domain-specific corpora with narrow 

applicability; works lacking methodological transparency. 

- Analysis approach: Thematic synthesis (OCR → moderation → system), identification of 

strengths/weaknesses, discussion of trade-offs and deployment concerns, and alignment with real-time 

constraints. 

3. Literature Review 

3.1 OCR Engines for Heterogeneous UIs 

Neural OCR has matured with the incorporation of recurrent networks, as in modern Tesseract releases, 

which improved line-level recognition and Unicode coverage compared to legacy engines [1], [2]. For on-screen 

content, three factors are particularly salient: 

- Language hints: Specifying multiple languages (e.g., Hindi + English) reduces script-level confusion and 

improves tokenization. 

- Preprocessing: Lightweight steps (grayscale, de-noising, adaptive thresholding, contrast stretching) 

stabilize recognition for anti-aliased, low-contrast text common in UIs. 

- Region selection: Constraining OCR to likely text regions reduces false positives and computational 

overhead. 

3.2 Scene Text Detection and Localization 

EAST (Efficient and Accurate Scene Text) demonstrates a fast and accurate method for localizing text via 

fully convolutional networks and geometry predictions [3]. The detector-before-OCR paradigm is attractive for 

screenshots because it: 

- Filters background clutter, images, and icons that confound OCR; 

- Improves effective OCR accuracy by presenting text-dominant crops; 
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- Enables confidence-weighted cascades where weak proposals are downweighted or ignored. 

 

3.3 Sequence Recognition Models 

CRNN-style recognizers view text as sequences and use CTC decoding to avoid explicit character 

segmentation [4]. This design improves robustness to distortions, variable-length tokens, and imprecise character 

boundaries—conditions frequent in desktop UIs with scaling and anti-aliasing. Compact CRNN variants and 

quantized deployments are increasingly practical for desktop-time constraints. 

3.4 Lexicon-Based Toxicity Detection 

Lexicon filters remain useful for explicit slurs and controlled vocabularies. Strengths include high precision 

on known abusive terms, straightforward maintenance of variants/transliterations, and predictable behavior. 

Weaknesses include lack of context (e.g., quotes, negations, satire) and vulnerability to obfuscation. Practical 

implementations incorporate cooldowns to prevent repeated triggers for persistent on-screen text and 

normalization to handle lookalike characters. 

3.5 Supervised Transformers for Toxicity 

Transformer-based classifiers trained on large annotated corpora (e.g., Jigsaw challenges) provide context-

aware assessments that often outperform lexicon rules alone [5]. Deployment considerations include: 

- Threshold calibration: Selecting operating points per label to balance false positives and recall for the 

application’s risk profile. 

- Domain shift: UI text can differ from social media comments; prompt/label engineering or light adaptation 

can reduce mismatch. 

- Calibration and interpretability: Confidence scores benefit from post-hoc calibration; explanations can 

build user trust. 

3.6 Zero-Shot Classification via NLI 

Zero-shot classification reframes detection as an NLI task: each label is a hypothesis, and the model 

evaluates entailment given the input text [8]. DeBERTaV3 improves efficiency and downstream performance 

with ELECTRA-style pretraining and gradient-disentangled embedding sharing [6]. Cross-lingual generalization 

is frequently evaluated with XNLI [7]. Operationally: 

- Label engineering matters: Clear, concise label descriptions typically improve results. 

- Multi-label configuration: Independent thresholds per label capture overlapping categories (e.g., “insult,” 

“hate,” “threat”). 

- Calibration: Per-label calibration and threshold sweeps stabilize performance across domains and 

languages. 

3.7 Multilingual and Code-Mixed Contexts 

HASOC-style tasks and datasets highlight the complexities of Hindi and related Indo-European languages 

[11]. Key observations: 

- Code-mix and transliteration: Mixed scripts (Devanagari/Latin) and creative spellings stress both OCR 

and classifiers. 

- Annotation ambiguity: Cultural nuances and differing guidelines complicate labels’ boundaries, affecting 

reliability. 

- Domain mismatch: Social media datasets may not reflect desktop UIs; collecting representative evaluation 

samples is essential for deployment. 
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3.8 System-Level Components for Real-Time Use 

- High-throughput capture: MSS is designed for fast, cross-platform screen grabbing with minimal overhead 

[12]. 

- Efficient overlays: Windows layered windows (UpdateLayeredWindow) support per-pixel alpha 

composition, enabling blur/mask overlays without forcing repaints of underlying applications [13]. 

- Practical UI: Toolkits like Kivy/KivyMD can present status, toggles, notifications, and logs with minimal 

boilerplate and acceptable performance [14]. 

- Scheduling and throttling: ROI grid sweeps and frame skipping provide predictable compute budgets at 

stable latencies. 

- Hardware utilization: GPU offload can reduce inference time for transformers; otherwise, quantization and 

batching are effective on CPU. 

4. Comparative Analysis and Trade-offs 

4.1 OCR Design Choices 

- Detector-before-OCR vs. direct OCR: A detector-first pipeline (e.g., EAST then OCR) reduces clutter and 

boosts OCR accuracy at the cost of an extra model stage. Direct OCR on the whole frame is simpler but pays in 

accuracy and compute. 

- LSTM OCR vs. CRNN recognition: LSTM-based OCR is convenient and widely available; CRNNs can 

outperform in challenging conditions if trained/tuned, but add model management complexity. 

- Preprocessing depth: Aggressive preprocessing can yield gains on anti-aliased or low-contrast UI text but 

risks removing weak strokes if not tuned. 

4.2 Moderation Logic 

- Lexicon-only: High precision for explicit terms, low recall for implicit/obfuscated cases. 

- Transformer-only: Context-aware with better recall, but can over-flag without careful thresholds and 

calibration. 

- Hybrid: Combining lexicon cues with transformers (and zero-shot augmentation) typically increases 

reliability, especially when outputs are fused with cooldowns and multi-frame confirmation. 

4.3 Zero-Shot Advantages and Caveats 

Zero-shot models facilitate new labels and cross-lingual scenarios without fine-tuning. However, 

performance depends on label phrasing, domain similarity, and multilingual coverage. Per-label thresholds and 

simple calibration (e.g., temperature scaling) substantially improve stability. 

4.4 Real-Time Responsiveness 

ROI scheduling, frame skipping, and micro-batching text for inference are reliable ways to maintain 

responsiveness. GPU usage, where available, helps transformers; CPU-only deployments benefit from quantized 

models and tokenizer reuse. 

5. Discussion 

5.1 Emerging Trends 

- OCR robustness is foundational. Scene text detection plus strong sequence recognition is steadily 

becoming standard for noisy or cluttered scenes. 

- Hybrid moderation is the norm. Stacking lexicon hits with transformer scores (and zero-shot labels) yields 

better coverage and resilience to obfuscation while allowing guardrails such as cooldowns. 
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- Tooling maturity matters. Standardized libraries for capture and overlays (MSS, layered windows) reduce 

engineering risk, while well-documented model hubs streamline deployment. 

 

5.2 Conflicting Results and Reconciliation 

- Precision vs. recall: Lexicon filters are precise yet brittle; transformers are more inclusive but can over-

flag. This points to per-label thresholding and hybrid confirmation. 

- Language and domain shifts: English-only models degrade on code-mixed Hindi–English. Multilingual 

checkpoints and small curated evaluation sets aligned with the deployment domain narrow the gap. 

5.3 Implications for Engineering 

- Add a text detector if OCR misses are high on cluttered UIs. 

- Normalize aggressively post-OCR (Unicode normalization, simple transliteration mapping, digit/letter 

lookalike replacements) to recover lexicon hits. 

- Adopt per-label thresholds and apply cooldowns to minimize alert fatigue. 

- Implement an evaluation loop (see Section 6) and periodically recalibrate thresholds using new data. 

6. Evaluation Blueprint 

6.1 Datasets 

- Internal samples: Curate consented screenshots representative of target UIs and languages. Ensure 

coverage of code-mixed Hindi–English and stylized fonts. 

- Public resources: Use multilingual datasets (e.g., HASOC) for reference baselines while noting domain 

mismatch [11]. 

6.2 Metrics 

- OCR: Character error rate (CER), word accuracy, script-specific breakdowns (Hindi vs. English). 

- Classification: Precision/recall/F1 per label, ROC-AUC and PR-AUC, and expected calibration error 

(ECE) for probability outputs. 

- System: End-to-end latency (capture → decision), frames per second, CPU/GPU utilization and memory 

footprint. 

- Fairness: Group-wise false positive/negative rates across language and identity slices, parity/equalized 

odds analyses [9], [10]. 

6.3 Experimental Protocols 

- Ablations: No detector vs. EAST-before-OCR; lexicon-only vs. transformer-only vs. hybrid; zero-shot 

label phrasing variants. 

- Threshold sweeps: Construct precision–recall curves for each label; select operating points based on 

application risk tolerance. 

- Robustness: Stress-test font changes, scaling, low-contrast text, translucency, and background motion 

reflective of modern UIs. 

7. Ethical, Privacy, and Safety Considerations 

- On-device inference: Prefer local processing to protect user data; if screenshots must be persisted, limit 

retention and apply redactions. 
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- Transparency and control: Provide notifications, explain detections, and allow users to override or whitelist 

cases. 

- Bias auditing: Track disparities across language and identity slices; publish summaries and incorporate 

feedback loops for continuous improvement. 

- Responsible defaults: Calibrate thresholds conservatively for sensitive categories and log uncertain cases 

for offline review rather than immediate enforcement. 

8. Limitations and Future Work 

- Code-mixed robustness: Develop OCR post-correction tailored to Hindi–English mixes; evaluate 

multilingual adapters or small-scale fine-tuning on representative samples. 

- Calibration and bias: Use temperature scaling or isotonic regression; conduct periodic fairness audits with 

updated evaluation slices. 

- Efficiency: Explore distilled/quantized transformers; cache tokenization and consider micro-batching 

across frames; use GPU where available. 

- OCR–moderation co-design: Investigate joint training (or cascaded learning) where OCR outputs are 

refined toward moderation-aware vocabularies. 

9. Conclusion 

A reliable on-screen moderation stack emerges from the confluence of robust OCR, context-aware 

classification, and careful system engineering. The literature indicates that detector-enhanced OCR pipelines 

materially reduce recognition errors on cluttered UIs, while hybrid moderation—fusing lexicon cues with 

transformer and zero-shot signals—improves coverage and resilience to obfuscation. Real-time responsiveness 

is achieved through ROI scheduling, frame skipping, and hardware-aware inference. Finally, privacy and fairness 

are not afterthoughts: calibration, bias auditing, and user controls are essential for responsible deployment. 

Continued progress on code-mixed language handling, compact multilingual models, and moderation-aware 

OCR refinement will further stabilize real-world systems. 
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