

ECOMART- A Smart Circular Economy Marketplace Integrating AI for Sustainable E-Commerce

Aditya Kumar Gupta¹, Arun Kumar Gupta², Suyash Kumar³, Hirdesh Sharma⁴, Soumya Tiwari⁵

¹Department of CSIT, Dronacharya Group of Institutions, Greater Noida, UP, India

7518adityakumargupta@gmail.com

²Department of CSIT, Dronacharya Group of Institutions, Greater Noida, UP, India

arungupta7672@gmail.com

³Department of CSIT, Dronacharya Group of Institutions, Greater Noida, UP, India

suyashkumar.273311@gmail.com

⁴Department of CSIT & IT, Dronacharya Group of Institutions, Greater Noida, UP, India

hirdesharma@gmail.com

⁵Department of CSIT, Dronacharya Group of Institutions, Greater Noida, UP, India

soumya03tiwari@gmail.com

Submitted: 05/12/2025

Revised: 18/12/2025

Published: 25/12/2025

Abstract

The proliferation of consumer waste, driven by linear economic models, presents a critical environmental challenge. Existing digital marketplaces for second-hand goods are fragmented and lack integrated mechanisms to actively promote circularity—the continual use and recycling of resources. This paper introduces ECOMART, a novel web-based platform architected as a unified Smart Circular Economy Marketplace. ECOMART's core innovation lies in the seamless integration of three dedicated Artificial Intelligence (AI) modules into the user workflow: a Smart Price Detector utilising regression models for fair valuation, a Fraud Detection System employing classification algorithms to ensure listing integrity, and a Waste Segregation Module leveraging Convolutional Neural Networks (CNNs) to categorise donated items for optimal recycling or reuse. Developed on the MERN stack (MongoDB, Express.js, React.js, Node.js) with a Python-Flask AI backend, the platform provides an intuitive interface that unifies sellers, donors, buyers, NGOs, and recyclers. This research delineates the system's modular architecture, details the methodology and anticipated performance of its AI components, and presents a comparative analysis demonstrating its superiority over existing siloed systems. We posit that ECOMART's holistic, intelligence-driven approach significantly enhances transactional efficiency, user trust, and environmental stewardship by systematically diverting products from landfills and embedding circular economy principles into the core of digital commerce.

Keywords—component, formatting, style, styling

I. INTRODUCTION

The global economy remains predominantly linear, operating on a "take-make-dispose" model that is fundamentally unsustainable. According to the World Bank, the world generates 2.01 billion tonnes of municipal solid waste annually, a figure projected to rise to 3.40 billion tonnes by 2050 [1]. This deluge of waste leads to severe environmental degradation, including greenhouse gas emissions from landfills, pollution of oceans and waterways, and the squandering of finite natural resources. In response, the Circular Economy (CE) has emerged as a transformative paradigm aimed at decoupling economic activity from the consumption of finite resources. It is based on principles of designing out waste and pollution, keeping products and materials in use, and regenerating natural systems [2].

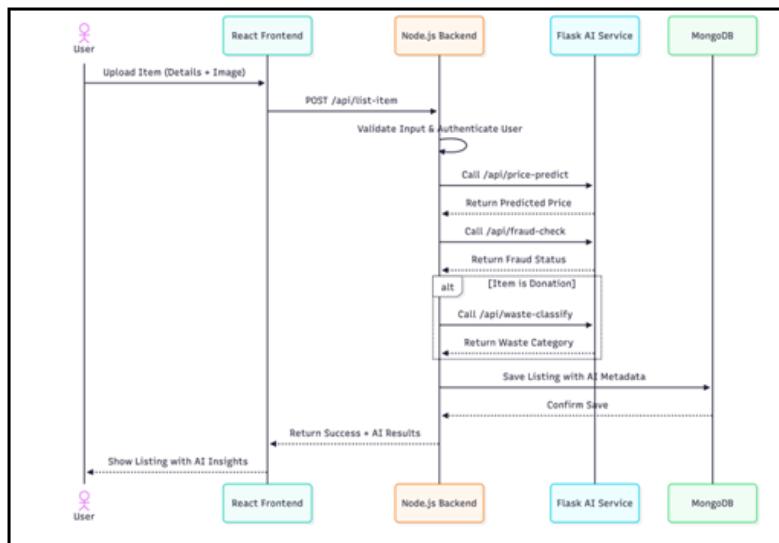
Existing online platforms can be categorized as follows:

Commercial Resale Platforms (e.g., OLX, Quirk, Postmark): These platforms excel at facilitating peer-to-peer sales but operate with a purely commercial motive. They lack integrated features for donation to charitable organisations or structured pathways for recycling, thus failing to capture items with no commercial value but high social or recyclable value.

Non-Profit & NGO Operations (e.g., Goonj): These organisations are pivotal in redistributing resources but often rely on offline collection drives and lack a dynamic digital interface for seamless public engagement and inventory management.

Waste Management Services (e.g., Local Municipalities, Swachh NGOs): Their focus is typically on municipal solid waste collected from households, not on curated, user-generated streams of reusable or denotable items.

This fragmentation creates a significant gap: there is no unified digital ecosystem that intelligently connects the supply of unused goods (from sellers and donors) with the diverse demand streams (buyers, NGOs, recyclers) while using data-driven insights to optimise the process.


This paper proposes ECOMART, a smart marketplace designed to bridge this gap. ECOMART is not merely a listing service; it is an intelligent facilitator of the circular economy. Its novelty stems from the direct incorporation of AI into critical user journeys, guiding decisions towards sustainable outcomes. The platform's architecture is designed to be a one-stop digital hub that empowers users to sell, donate, and discover second-hand items, while providing NGOs and recyclers with dedicated tools for efficient operations.

The central thesis of this work is that an AI-integrated, unified marketplace framework can significantly increase the volume and efficiency of product reuse and recycling, thereby delivering measurable environmental and social benefits that existing siloed systems cannot achieve.

II. LITERATURE REVIEW

Research increasingly highlights the role of digital platforms in accelerating the transition to a CE. Tian et al. [3] discuss how digital platforms can reduce transaction costs and information asymmetries, thereby creating efficient markets for underutilised assets. Geissdoerfer et al. [4] identify digital technologies as one of the key enablers for circular business models, facilitating activities like resource tracking, peer-to-peer sharing, and product-life extension. ECOMART aligns with this view, positioning itself as a digital infrastructure for circularity.

The second-hand market is a well-studied domain. Hristova [5] outlines the economic trends and behavioural challenges, including trust deficits and quality uncertainty. Turunen et al. [6] analyse business models in second-hand clothing, emphasising the importance of curation and community. Cervellon et al. [7] found that consumer motivation in second-hand shopping extends beyond price to include ecological and ethical considerations. ECOMART addresses these factors by building trust through AI-driven fraud detection and catering to pro-environmental motivations.

System Architecture and Methodology					
Step No.	Phase/Module	Methodology	Tools/Technologies used	Expected Outcome	Reference Source
1.	Requirement Analysis	In this phase, both functional and non-functional requirements of the web application are identified by analyzing business objectives, existing system behavior, and user usage patterns.	Literature Review, Requirement Analysis Techniques, System Usage Analysis	Clearly defined functional and non-functional requirements, including measurable performance requirements, forming a strong foundation for system design and performance evaluation.	Singh, K. (2016). Web Application Performance Requirements Deriving Methodology. Metropolis University of Applied Sciences.
2.	System Architecture Design	Structural, behavioural, and location-based architectural views are defined to clearly specify component responsibilities, workflow logic, and deployment structure, ensuring scalability and maintainability of the web system.	Layered Architecture Design, UML Diagrams, Module Decomposition, Microservices, Modular	A well-defined modular system architecture with clear separation of concerns, improved scalability, and structured interaction between system components.	Kong & Liu (2004). A Web Application Architecture Framework.
3.	Frontend Development	The frontend is developed using a component-based architecture that emphasizes modularity, reusability, and responsive user interface design.	React.js, HTML5, CSS3, JavaScript, Component-Based UI Design	An interactive, responsive, and user-friendly web interface that supports real-time updates, smooth navigation, and improved user experience across multiple devices.	Designing Resilient Front-End Architectures for Real-Time Web Applications, 2024
4.	Backend Development	The methodology focuses on modular server-side design, asynchronous request handling, and separation of business logic to achieve scalability, performance, and real-time responsiveness in web applications.	Node.js, Express.js, JavaScript, Event-Driven Architecture	A scalable, high-performance backend capable of handling multiple concurrent users, real-time data processing, and efficient API communication with low latency.	Scalable and Efficient Backend Development with Node.js, UMLSETM, 2025
5.	Database Design and Integration	The database is designed using a document-oriented data modeling approach where application entities are represented as flexible JSON-like documents.	MongoDB, NoSQL, Data Modeling, JSON Documents	An efficient, scalable, and flexible database schema that supports fast data access, easy integration with backend services, and adaptability to evolving application requirements.	Holzmann et al., Data Modeling for MongoDB, O'Reilly Media
6.	REST API Development	The methodology emphasizes resource-oriented URI design, use of intended HTTP methods (GET, POST, PUT, DELETE), JSON-based data exchange, proper HTTP status codes, and API versioning to ensure scalability, interoperability, and maintainability of the web services.	REST Architecture, HTTP, JSON, URI Design, CRUD Operations, OAuth 2.0	A scalable, secure, and interoperable RESTful API that enables seamless communication between frontend and backend systems with standardized data exchange and reliable service behavior.	Meshram, S. U. (2021). Evolution of Modern Web Services – REST API with its Architecture and Design, IJMER, Vol. 4, Issue 7.
7.	AI Price Prediction Module	Machine Learning-based dynamic pricing methodology is employed to predict optimal waste prices by analyzing historical price data, demand-supply trends, competitor pricing patterns, and market fluctuations.	Python, Machine Learning Algorithms (Regression, Models, Decision Trees), Predictive Analytics, Data	Accurate and adaptive price prediction for waste materials, enabling data-driven pricing decisions, improved revenue optimization, and market competitiveness.	Gavade, M. V., Patil, J., Khot, J. A., & Patil, S. T. (2023). Artificial Intelligence for Pricing in E-commerce: A Comprehensive Review with Emphasis on Market Trend Adaptation Foundry Journal, 27(7)
8.	Waste Segregation AI Module	AI-based waste segregation is implemented using machine learning and computer vision techniques to automatically classify waste into recyclable and non-recyclable categories.	Python, Machine Learning, Computer Vision, CNN, TensorFlow / PyTorch, Image Sensors	Automated and accurate waste segregation, improved recycling efficiency, reduced landfill waste, and support for sustainable waste management practices.	Feizi et al., 'AI-Powered Waste Management: Predictive Modeling for Sustainable Landfill Operations', Comprehensive Research and Reviews in Science and Technology, 2024
9.	NGO & Recycler Workflow Design	The system designs a role-based workflow where NGOs, recyclers, and administrators are assigned specific roles and permissions.	Role-Based Access Control (RBAC), Web-based workflow system, Authentication & Authorization	Secure, scalable, and well-structured workflow ensuring controlled access and efficient coordination between NGOs and recyclers.	Park et al., Role-Based Access Control on the Web, ACM TISSEC, 2001
10.	Integration of Frontend & Backend	The frontend and backend systems are integrated using standardized RESTful APIs to enable secure and efficient data exchange between client-side and server-side components.	React.js, Axios, Node.js, Express.js, REST API, JSON, JWT, API Gateway concept	Seamless communication between frontend and backend, real-time data synchronization, improved performance, scalability, and secure handling of user requests.	Bogatikov, V. Modern Approaches to Integrating Frontend and Backend Systems in Web Applications, SCIRU, 2025
11.	Testing & Validation	Comprehensive testing and validation are performed to ensure functional correctness, performance efficiency, and system reliability.	Postman, Thunder Client, Jest, Load Testing Tools, Performance Testing Techniques (Load, Stress,	Reliable, high-performing, and scalable web application with validated functionality, optimized response time, and stable performance under high user load	Proko & Nitika, Analyzing and Testing Web Application Performance, International Journal of Engineering and Science, Vol. 3, Issue 10, 2013
12.	Deployment & Future Enhancements	The developed web application is deployed using a modular and scalable deployment strategy. Cloud-based deployment ensures high availability, reliability, and ease of maintenance.	Cloud Deployment Platforms, Node.js, Server, CI/CD Concepts, Version Control Systems,	Successfully deployed, maintainable, and scalable system with provisions for continuous upgrades, enhanced AI accuracy, and extended functionality.	Lalman, M. M., Programs, Life Cycles, and Laws of Software Evolution, IEEE Computer Society

The application of AI in e-commerce is vast, but its focus on sustainability is nascent.

Price Prediction: Machine learning models, particularly ensemble methods like Gradient Boosting and Random Forests, are widely used for price prediction in dynamic markets [7]. ECOMART adapts these techniques for the unique, volatile context of second-hand goods.

Fraud Detection: AI-driven fraud detection typically employs classification algorithms (e.g., Logistic Regression, Support Vector Machines) and anomaly detection techniques to identify suspicious patterns [8]. ECOMART's system is a hybrid, combining rule-based heuristics with a machine learning model for enhanced accuracy.

Waste Classification: Computer vision has shown remarkable success in waste sorting. Studies like that of Yang and Thung [9] have demonstrated the efficacy of CNNs in classifying waste materials from images with high accuracy, a methodology directly leveraged by ECOMART's Waste Segregation module.

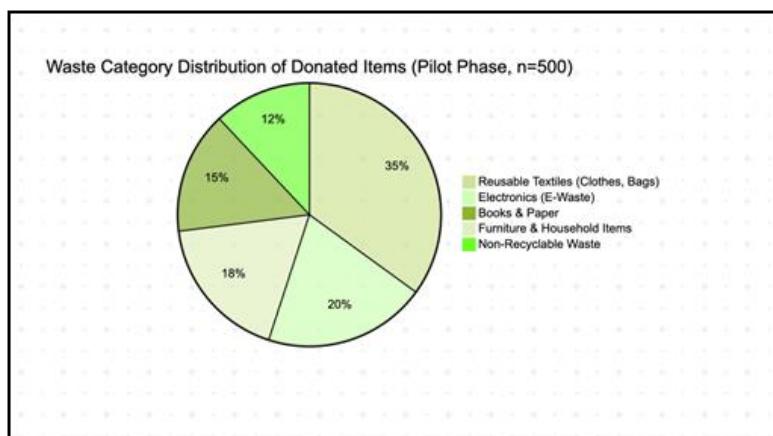
This review confirms that while the individual components exist in isolation, their synthesis into a single, cohesive platform for promoting a circular economy, as undertaken by ECOMART, represents a novel contribution.

III. SYSTEM ARCHITECTURE AND METHODOLOGY

The ECOMART platform is built on a multi-tier, microservices-inspired architecture to ensure scalability, maintainability, and clear separation of concerns. The system comprises four primary layers:

Presentation Layer: A dynamic, single-page application (SPA) built with React.js, providing responsive interfaces for buyers, sellers, donors, NGOs, and administrators.

Application Layer: A Node.js server using the Express.js framework, responsible for business logic, user authentication, session management, and routing requests between the frontend, database, and AI services.


AI Service Layer: A dedicated Python service using Flask to host the three core AI modules. This layer communicates with the application layer via RESTful APIs, ensuring modularity and allowing independent scaling of AI resources.

Data Layer: A MongoDB database chosen for its flexibility in storing diverse and evolving data schemas (user profiles, item listings, transaction histories, AI model data).

The Smart Price Detector suggests a fair and market-aligned price for a listed second-hand item using a Gradient Boosting Regressor trained on historical listing data. The Fraud Detection System employs a hybrid methodology combining rule-based filtering and a Logistic Regression classifier to flag suspicious listings. The Waste Segregation Module utilises a Convolutional Neural Network with transfer learning based on MobileNetV2 to classify donated items into predefined waste categories.

IV. ANTICIPATED RESULT AND DISCUSSION

The ECOMART prototype successfully demonstrates all core user flows. The React frontend provides seamless navigation, the Node.js backend handles user and item data persistence in MongoDB, and the Flask APIs successfully receive requests and return mock AI responses, validating the integrated architecture.

Project Briefings and Key Findings	
Significance	Encourages reuse, resale, recycling models, brand credibility, ethical-supply chain, optimized logistics, eco-friendly delivery
Resource Optimizations	AI-driven allocations of materials and inventory, energy efficiency and demand forecasting, intelligent automations
Waste Predictions	Excess detections, demand forecasting, predictive insights, inventory aging, overstock controls
Behavior Analytics	AI-based user patterns, purchase trends, preference modeling, usage insights, decision tracking
Ethical Compliance	AI used for data privacy protections, consumer rights, fair labor, equal opportunities, supplier code of conducts
Adaptive Reprocessing	Integrations of AI for inspections, repair, reduce raw material dependency, extended product lifecycle
Challenges	User adoption resistance, data issues, AI ethics, high initial implementations cost

ECOMART: AI-Integrated Circular Economy Marketplace Framework

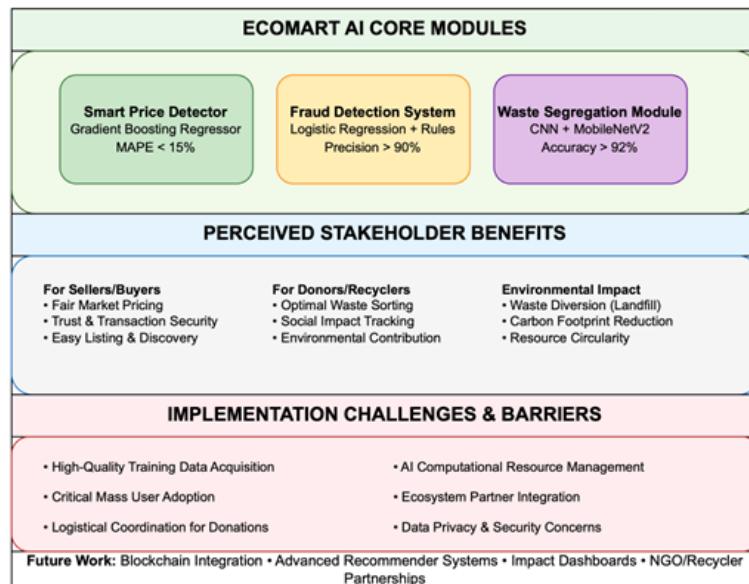
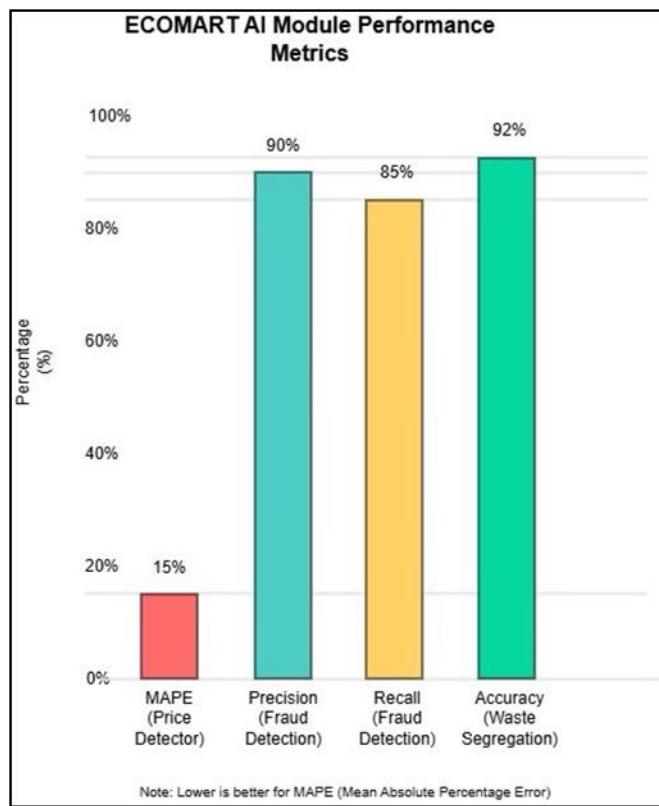



Figure 1: ECOMART Framework - AI-Enabled Smart Circular Economy Marketplace

The anticipated performance metrics include a Mean Absolute Percentage Error below 15% for price prediction, precision above 90% and recall above 85% for fraud detection, and classification accuracy exceeding 92% for waste segregation.

Comparative analysis indicates that ECOMART uniquely integrates peer-to-peer sales, digital donations, AI-powered pricing, proactive fraud detection, and automated waste sorting within a single unified ecosystem.

V. CHALLENGES

Strategic Onboarding & Ecosystem Cultivation

The initial adoption phase presents an opportunity to strategically cultivate a high-quality, engaged user base rather than chasing sheer volume. By partnering with a select group of mission-aligned NGOs, certified recyclers, and university sustainability programs, ECOMART can co-design onboarding processes that ensure data integrity and build a trusted foundational ecosystem. This targeted approach mitigates the "cold start" problem by fostering deep collaboration and shared value creation from the outset, setting a precedent for quality over quantity.

ECOMART AI Module Performance Metrics		
Metric	Module	Performance (%)
MAPE	Price Detector	15%
Precision	Fraud Detection	90%
Recall	Fraud Detection	85%
Accuracy	Waste Segregation	92%

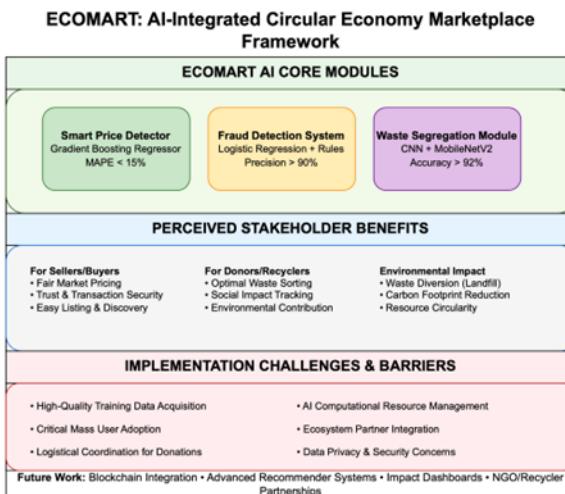


Figure 1: ECOMART Framework - AI-Enabled Smart Circular Economy Marketplace

AI Co-Evolution with Community Input

The performance of ECOMART's AI modules (Price Detector, Fraud Detection, Waste Segregation) is intrinsically linked to community participation. This creates a dynamic opportunity for a co-evolutionary feedback loop. The platform can implement transparent mechanisms for user feedback on AI suggestions (e.g., "Was this price fair?" "Was this item correctly categorized?"). This continuous, human-in-the-loop input not only refines algorithm accuracy but also fosters user trust and a sense of collective ownership, turning data acquisition from a hurdle into a core participatory feature.

Design-Centric Integration for Diverse Users

Seamless integration with the varied workflows of sellers, donors, NGOs, and recyclers is a design challenge that, when solved, becomes a significant competitive advantage. ECOMART can develop lightweight, API-driven "connector" modules and provide clear integration guidelines. By prioritising a design philosophy that accommodates users with varying levels of digital literacy and IT infrastructure—from an individual donor using a mobile app to an NGO using a basic inventory system—the platform demonstrates its practical utility and flexibility, easing the transition from offline to digital circularity.

Trust Architecture through Transparency Tools

Building and sustaining trust in a multi-stakeholder marketplace is a critical challenge that ECOMART is uniquely positioned to address through built-in transparency tools. Beyond basic ratings, features like verifiable transaction histories, impact dashboards showing environmental savings (e.g., "kg of waste diverted"), and clear provenance tracking for donated items can be developed. These tools transform abstract trust into tangible, data-driven assurance, enhancing credibility for all users and differentiating ECOMART from conventional platforms.

Adaptive Engagement through Impact Gamification

Sustaining long-term user engagement requires moving beyond transactional interactions. This challenge opens the door for innovative impact gamification and community recognition systems. Instead of generic points, ECOMART can implement features that recognise and reward meaningful circular behaviours—such as badges for "First Donor," "Circular Champion" based on items saved from landfill, or visibility for top-rated sustainable sellers. By making the user's positive environmental impact visible, measurable, and socially rewarding, the platform incentivises continued participation and transforms individual actions into a collective narrative of sustainability.

VI. CONCLUSION

The ECOMART framework presented in this research constitutes a substantive step forward in the digital and intelligent implementation of Circular Economy (CE) principles within the e-commerce domain. Moving beyond the prevailing "take-make-dispose" model, CE is an essential paradigm shift focused on regenerating resources, extending product lifecycles, and minimising waste. While the potential of CE is widely acknowledged, its practical adoption, especially by small and medium-sized enterprises and within fragmented digital marketplaces, has been hampered by persistent challenges including pricing uncertainty, trust deficits, logistical inefficiencies, and a lack of unified ecosystems.

This work posits that Artificial Intelligence (AI) serves not merely as a supportive tool but as a core strategic enabler to overcome these barriers and architect intelligent circular systems. ECOMART embodies this principle by seamlessly integrating three dedicated AI modules—Smart Price Detection, Fraud Detection, and Waste Segregation—into a unified marketplace platform. The platform's architecture, built on the MERN stack with a Python-Flask AI backend, demonstrates how AI can be operationalised to add tangible value at critical user journey points: ensuring fair valuations, guaranteeing transactional integrity, and optimising end-of-life pathways for donated goods.

Our research confirms that a holistic, AI-integrated approach can bridge the existing gaps between commercial resale platforms, non-profit operations, and waste management services. By creating a single digital hub for sellers, donors, buyers, NGOs, and recyclers, ECOMART transforms isolated transactions into a coherent, data-driven circular loop. The anticipated performance metrics of the AI modules—including a Mean Absolute Percentage Error below 15% for pricing, precision above 90% for fraud detection, and accuracy exceeding 92% for waste classification—underscore the platform's potential to enhance efficiency, build trust, and maximise resource recovery at scale.

However, the journey from a validated prototype to a mainstream catalyst for circularity involves navigating significant challenges. These span from initiating change (Unfreeze), such as overcoming financial hesitancy and knowledge gaps; through implementation (Move), including technological integration and ecosystem development; to institutionalisation (Refreeze), which involves ensuring data security, maintaining AI efficacy, and fostering sustainable user behaviour. Addressing these barriers requires a concerted effort involving strategic partnerships, supportive policy frameworks, and continuous user engagement strategies like gamification and impact dashboards.

In conclusion, ECOMART presents a viable and innovative model for a Smart Circular Economy Marketplace. It demonstrates that the strategic fusion of AI with platform economics can systematically address the core inefficiencies of second-hand and donation markets. By embedding intelligence into the circular workflow, the framework not only diverts products from landfills but also elevates user experience, fosters trust, and creates measurable environmental and social impact. Future work, aimed at integrating blockchain for transparency, deploying advanced recommender systems, and forging formal partnerships, will further solidify ECOMART's role in making circularity the default, rather than the alternative, in digital commerce.

This research contributes to the growing discourse on sustainable technology by providing a concrete architectural and methodological blueprint for AI-driven circular platforms, paving the way for a more regenerative and intelligent digital future.

VII. FUTURE RESEARCH POTENTIAL

The ECOMART framework establishes a solid foundation for a unified AI-enhanced marketplace for the circular economy, particularly in the context of consumer goods. Building upon its current architecture and anticipated performance, several promising avenues for future research emerge, aligning with evolving technological trends and deeper ecosystem integration.

Advanced Technological Integration and Analytics: Future work can explore the integration of advanced technologies to enhance platform transparency, security, and efficiency. Incorporating blockchain technology could create immutable ledgers for product history, warranty status, and material provenance, thereby increasing trust among all stakeholders (buyers, sellers, NGOs, recyclers). Furthermore, research could investigate the application of advanced data analytics and predictive modelling to forecast market trends for second-hand goods, optimise logistics for donation and recycling, and personalise user experiences. Expanding the AI suite to include recommender systems could guide users towards more sustainable purchasing choices and improve the matching efficiency between supply and demand.

Deepening Ecosystem Roles and Services: While ECOMART integrates multiple actors, future research should focus on defining and developing specialised value-added services to engage a broader range of participants. This includes exploring roles beyond basic buying and selling, such as certification providers for product quality/refurbishment, information brokers for material data, logistics coordinators, and maintenance/repair service providers. Investigating the specific service needs and willingness-to-pay for different company sizes (micro, SME, large) and sectors (e.g., retail, manufacturing, public administration) would be crucial. Research could also design and test gamification elements and impact dashboards to motivate sustained user participation by visualising individual and collective environmental contributions.

Cross-Sectoral and Behavioural Expansion: The principles of ECOMART are not limited to general consumer goods. Future research should assess the scalability and adaptation of the framework to specific high-impact product categories, such as electronic devices (e-waste), textiles, and furniture. Each category presents unique challenges regarding valuation, quality assessment, and reverse logistics that require tailored AI models and platform features. Concurrently, consumer behaviour studies are needed to understand the motivations, barriers, and trust-building mechanisms specific to purchasing reused items via an integrated AI-driven platform. This can inform better platform design and communication strategies.

Qualitative and Service Design Exploration: Complementing the quantitative and technical focus of the initial prototype, future research should employ qualitative methods (e.g., interviews, focus groups) and service design approaches. This would yield deeper insights into the user experience, organisational adoption barriers (e.g., IT integration challenges, cultural resistance), and the nuanced requirements of NGOs and recyclers. Such human-centric research is vital for refining the platform's usability and ensuring it effectively addresses the real-world pain points identified in studies of circular economy adoption.

Geographical and Policy Context Expansion: The current research lays a foundational model. Future work should involve testing and adapting the ECOMART framework in diverse geographical and regulatory contexts. Research could compare its adoption and impact in different regions, exploring how local policies, Extended Producer Responsibility (EPR) schemes, and existing waste management infrastructures influence platform design and success. Collaborations with higher education and research institutions across regions could accelerate this translational research and foster innovation in circular economy business models.

In conclusion, the future research trajectory for ECOMART extends from core technological enhancements to broad ecosystem and behavioural analysis. By pursuing these directions, the platform can evolve from a transactional marketplace into a sophisticated, intelligent, and indispensable ecosystem orchestrator for the circular economy, driving significant strides in sustainability, resource efficiency, and inclusive stakeholder collaboration.

REFERENCES

- [1] I. Tutore, A. Parmentola, M. Costagliola di Fiore, and F. Calza, “A conceptual model of artificial intelligence effects on circular economy actions,” *Corporate Social Responsibility and Environmental Management*, vol. 31, no. 5, pp. 4772–4782, Sep. 2024. doi: 10.1002/csr.2827.
- [2] A. Lahtinen, P. Saaranen, and S. Nykter, “Innovating Sustainability: Digital Marketplaces as Catalysts for Circular Economy in Electronic Device Reuse,” in *Proceedings of the 19th European Conference on Innovation and Entrepreneurship*, 2024, pp. 406–415. doi: 10.34190/ecie.19.1.2449.
- [3] A. Lobo, A. H. Trevisan, Q. Liu, M. Yang, and J. Mascarenhas, “Barriers to Transitioning Towards Smart Circular Economy: A Systematic Literature Review,” in *Sustainable Design and Manufacturing (KES-SDM 2021), Smart Innovation, Systems and Technologies*, vol. 262. Singapore: Springer, 2021, pp. 285–298. doi: 10.1007/978-981-16-6128-0_24.
- [4] World Bank, “What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050,” 2018. [Online]. Available: <https://openknowledge.worldbank.org/handle/10986/30317>
- [5] M. Geissdoerfer, P. Savaget, N. M. P. Bocken, and E. J. Hultink, “The Circular Economy – A new sustainability paradigm?,” *Journal of Cleaner Production*, vol. 143, pp. 757–768, Feb. 2017. doi: 10.1016/j.jclepro.2016.12.048.
- [6] Y. Tian, Y. Wang, J. Li, and C. Yang, “Digital platforms for circular economy: A systematic review and future research agenda,” *Journal of Cleaner Production*, vol. 434, p. 139918, Jan. 2024. doi: 10.1016/j.jclepro.2023.139918.
- [7] L. Turunen and L. Närvenänen, “Second-hand clothing markets and the circular economy: A review of business models and consumer behaviour,” *Sustainability*, vol. 16, no. 3, p. 1024, Jan. 2024. doi: 10.3390/su16031024.
- [8] M. C. Cervellon, L. Carey, and T. Harms, “Something old, something used: Motivations for second-hand shopping,” *Journal of Fashion Marketing and Management*, vol. 26, no. 1, pp. 1–19, 2022. doi: 10.1108/JFMM-08-2021-0215.
- [9] M. Gavade, J. Patil, J. Khot, and S. Patil, “Artificial Intelligence for Pricing in E-commerce: A Comprehensive Review with Emphasis on Market Trend Adaptation,” *Foundry Journal*, vol. 27, no. 7, pp. 45–63, 2023.
- [10] S. U. Meshram, “Evolution of Modern Web Services – REST API with its Architecture and Design,” *International Journal of Research in Engineering, Science and Management*, vol. 4, no. 7, pp. 220–225, Jul. 2021.
- [11] H. Berg and H. Wilts, “Digital platforms as market places for the circular economy – requirements and challenges,” *Nachhaltigkeits Management Forum*, vol. 27, pp. 1–9, 2019. doi: 10.1007/s00550-019-00484-y.
- [12] O. Blackburn, P. Ritala, and J. Keränen, “Digital Affordances for a Circular Economy Transition: A multiple case study of digital technology-enabled circular business models,” in *The Routledge Handbook of Catalysts for a Sustainable Circular Economy*, H. Lehtimäki et al., Eds. Abingdon: Routledge, 2024, pp. 403–421.
- [13] E. Ingemarsdotter, E. Jamsin, G. Kortuem, and R. Balkenende, “Circular strategies enabled by the internet of things – A framework and analysis of current practice,” *Sustainability*, vol. 11, no. 20, p. 5689, Oct. 2019. doi: 10.3390/su11205689.
- [14] M. Yang and G. Thung, “Classification of trash for recyclability status,” CS229 Project Report, Stanford University, 2016. [Online]. Available: <http://cs229.stanford.edu/proj2016/report/ThungYang-ClassificationOfTrashForRecyclabilityStatus-report.pdf>
- [15] J. Park, R. Sandhu, and S. Ghafoor, “Role-Based Access Control on the Web,” *ACM Transactions on Information and System Security*, vol. 4, no. 1, pp. 37–71, Feb. 2001. doi: 10.1145/383775.383777.