Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

Predictive Failure Recovery in Cloud-Native DevOps Pipelines Using
Autonomous Multi-Agent AIOps Frameworks

Peeyush Kumar Nahar!, Pratap Patwal?

'Department of Computer Science and Engineering (M.Tech — Final Year)
Bikaner Technical University / Laxmi Devi Institute of Engineering and Technology
Email: peeyushnahar123@gmail.com

’Head of Department, Computer Science and Engineering
Laxmi Devi Institute of Engineering and Technology

Email: pratappatwal@gmail.com

Submitted: 01/12/2025 Revised: 20/12/2025 Published: 28/12/2025
Abstract

Cloud-native DevOps pipelines are becoming more complex, which makes them more likely to fail unexpectedly. These
failures disrupt software delivery and lower system reliability. Traditional monitoring and incident-response methods depend
a lot on manual work. This leads to longer recovery times and inconsistent quality in fixing issues. To tackle these problems,
this research suggests an Autonomous Multi-Agent AIOps Framework for predicting failures and automating recovery in
cloud-native DevOps settings. The framework includes specialized intelligent agents, like Data Collection Agents, Anomaly
Detection Agents, Root-Cause Analysis Agents, and Auto-Remediation Agents, that work together across CI/CD workflows.
By combining machine learning-based predictive analytics with event-driven automation, the system can predict failures
before they happen and start self-healing actions with little input from humans. Tests on containerized microservices
pipelines show significant improvements in Mean Time to Detect (MTTD), Mean Time to Recover (MTTR), and
deployment downtime. The proposed framework improves reliability, scalability, and operational efficiency. This helps
DevOps teams create truly autonomous, resilient, and adaptable cloud-native delivery pipelines.

Keywords: AlOps, Multi-Agent Systems, Predictive Failure Detection, Autonomous DevOps, Cloud-Native Pipelines,
Auto-Remediation, CI/CD Automation, Intelligent Agents, Root-Cause Analysis, Self-Healing Systems, Anomaly Detection,
Machine Learning in DevOps, Pipeline Reliability, Event-Driven Automation

1. Introduction

Cloud-native architectures and DevOps practices are the foundation of modern software delivery. Organizations
use microservices, containers, CI/CD pipelines, and automated workflows to achieve fast deployment cycles and
high availability. However, as systems grow, the connections between these components create considerable
operational complexity. Failures in one microservice, pipeline stage, or cluster resource can spread quickly,
leading to deployment delays, service issues, or complete outages. Traditional monitoring and incident-response
methods rely heavily on manual troubleshooting, which is not enough in environments where thousands of
events happen every second.

To tackle these challenges, the industry is increasingly adopting Artificial Intelligence for IT Operations
(AIOps). AIOps uses machine learning, big-data analytics, and automation for smarter decision-making. While
AlOps tools offer valuable insights, such as finding anomalies, mining log patterns, and correlating alerts, most
current solutions still work as standalone modules and need human help for fixing issues. This limits their
ability to deal with unexpected failures in fast-moving DevOps pipelines.

In recent years, multi-agent systems (MAS) have appeared as a promising approach for allowing autonomous
decision-making in distributed environments. Intelligent agents, each focused on a specific function, can work
together to observe system behavior, analyze patterns, predict failures, and initiate automated corrective actions.
When combined with AIOps capabilities, MAS can create self-managing DevOps ecosystems that can foresee
failures before they disrupt the pipeline.

http://kuwaitjournals.com 63

mailto:peeyushnahar123@gmail.com

Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

This research introduces an Autonomous Multi-Agent AIOps Framework aimed at cloud-native DevOps
pipelines. The framework includes several coordinated agents responsible for data collection, finding anomalies,
root-cause analysis, and automated remediation. By using predictive analytics and self-managing control loops,
the system allows for proactive and self-healing pipeline behavior. Experimental tests on containerized CI/CD
environments show significant improvements in Mean Time to Detect (MTTD) and Mean Time to Recover
(MTTR), indicating better reliability and operational efficiency.

2. Theoretical Background and Literature Review
2.1 Theoretical Background

The proposed Autonomous Multi-Agent AIOps Framework is based on several important ideas. These include
cloud-native engineering, DevOps automation, machine learning, and multi-agent systems (MAS). It's crucial to
understand these concepts to grasp the design and operational principles of the framework.

2.1.1 Cloud-Native Computing

Cloud-native systems are built with microservices, container orchestration platforms like Kubernetes, and elastic
cloud infrastructure. Their main features, scalability, modularity, and distributed operations, make them very
dynamic but also susceptible to frequent and unpredictable failures. The temporary nature of containers and the
decentralized structure of microservices need flexible and automated operational strategies. This forms the
foundation for integrating AIOps-driven intelligent automation.

2.1.2 DevOps and CI/CD Pipelines

DevOps is a way of working that brings together development and operations. Its goal is to achieve continuous
integration (CI), continuous delivery/deployment (CD), and fast feedback cycles. CI/CD pipelines include
automated steps such as building, testing, security scanning, deployment, and monitoring. Failures at any step
can lead to delays or service interruptions. The key ideas behind DevOps focus on automation, observability,
and ongoing improvement. These ideas connect well with using smart autonomous agents to take care of
pipeline health.

2.1.3 Artificial Intelligence for I'T Operations (AIOps)

AlOps is the use of artificial intelligence and machine learning to automate and improve IT operations. It
combines methods like anomaly detection, event correlation, predictive analytics, and automated execution of
remediation workflows. The theory behind AIOps is based on:

- Learning from logs, metrics, and traces

- Recognizing patterns to identify performance issues

- Predictive modeling to detect failures early

- Automated decision-making for responding to incidents

AlOps serves as the intelligence layer of the proposed framework.
2.1.4 Multi-Agent Systems (MAS)

A multi-agent system consists of autonomous entities, called agents, that perceive their environment, reason
based on their observations, and act to achieve individual or collective goals. The main theoretical features of
MAS include:

- Autonomy: Agents function without continuous human guidance.
- Cooperation: Agents work together and share insights to solve complex problems.
- Specialization: Each agent performs a specific function, which allows for a modular and scalable design.

- Reactivity and Proactivity: Agents respond to real-time events and anticipate system issues before they occur.

http://kuwaitjournals.com 64

Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

These principles guide the design of Data Collector Agents, Anomaly Detection Agents, Root-Cause Analysis
Agents, and Auto-Remediation Agents in the proposed framework.

2.1.5 Predictive Failure Modeling

Predictive failure analysis uses machine learning methods like classification models, time-series forecasting,
clustering, and deep learning to predict possible system failures. The theoretical foundation includes:

- Supervised learning to classify normal and abnormal behavior

- Unsupervised learning for finding anomalies in unlabeled datasets

- Time-series analysis to forecast resource exhaustion or performance decline

- Causal inference to identify the main triggers of failures

This theory supports the predictive decision-making engine of the AIOps agents.
2.1.6 Self-Healing Systems and Control Loops

Self-healing computing systems depend on adaptive control loops that monitor system states, detect problems,
diagnose issues, and automatically carry out fixes. The well-known MAPE-K loop (Monitor, Analyze, Plan,
Execute over a Knowledge base) serves as the theoretical base for autonomous operations. The proposed
framework builds on this model by incorporating multi-agent collaboration, which allows for distributed and
smart self-recovery in DevOps pipelines.

2.2 Literature Review

The increasing complexity of cloud-native DevOps pipelines has led to significant research in fields like AIOps,
anomaly detection, autonomous systems, multi-agent architectures, and predictive failure management. This
section reviews the existing literature and points out the gaps that the proposed framework intends to fill.

2.2.1 AIOps in Cloud and DevOps Environments

Early AIOps research mainly looked at log analysis, event clustering, and anomaly detection. Studies by IBM,
Gartner, and various academic groups highlighted how big-data analytics can simplify IT operations. Current
AlOps platforms like Moogsoft, Splunk, and Dynatrace use machine learning to correlate alerts and reduce
noise. However, these tools are mostly reactive. They usually need manual fixes after incidents happen.
Additionally, commercial AIOps tools function as separate modules instead of fully integrated parts of CI/CD
pipelines. This restricts their ability to affect pipeline behavior on their own.

2.2.2 Machine Learning for Anomaly Detection and Prediction

Many methods have been studied for finding anomalies and predicting failures in distributed systems. These
methods include time-series forecasting like ARIMA and Prophet, clustering algorithms such as K-Means and
DBSCAN, and deep learning models such as LSTM, CNN, and Autoencoders. While these models improve
early detection accuracy, research shows that they have difficulty with the high variability and noise that comes
from microservices-based setups. Additionally, finding anomalies does not ensure system stability unless it is
backed by automated decision-making and recovery actions.

2.2.3 Root Cause Analysis in Cloud-Native Systems

Recent studies have looked into automated Root Cause Analysis (RCA) using causal graphs, dependency
modeling, and log sequence analysis. Techniques such as causal inference and Bayesian networks have been
used to identify the links between pipeline events and system failures. While these models improve diagnostic
accuracy, most RCA methods are costly in terms of computation and need expert adjustments. Moreover,
current RCA solutions do not work together with anomaly detection or remediation automatically, which limits
their ability to complete the cycle of autonomous operations.

http://kuwaitjournals.com 65

Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

2.2.4 Self-Healing and Auto-Remediation Mechanisms

Self-healing systems have been studied in cloud orchestration and DevOps. Kubernetes offers basic self-healing
features, such as rescheduling failed containers. Research has built on these ideas using Al-driven healing
methods, including automated rollback, traffic rerouting, and resource scaling. However, most self-healing
systems focus on infrastructure issues and do not work well with CI/CD pipelines. This leaves a gap in research
regarding pipeline-level self-recovery, as failures during the build, test, or deployment stages are mostly ignored.

2.2.5 Multi-Agent Systems for Intelligent Automation

Multi-agent system (MAS) research spans fault tolerance, distributed decision making, and intelligent
coordination. MAS frameworks have been applied to areas like robotics, energy management, and disaster
response. In IT operations, agent-based architectures have been used for distributed monitoring and alerting.
However, only limited research has explored the use of MAS combined with AIOps for complete pipeline
autonomy. Most existing MAS designs lack predictive intelligence and do not incorporate ML-driven
remediation strategies, highlighting the need for a unified multi-agent AIOps architecture.

2.2.6 Research Gap Identification

Based on the reviewed literature, the following gaps are observed:

1. AlOps is still mostly reactive; it focuses on detection instead of prediction and proactive recovery.

2. Current ML models do not integrate with automated remediation, which limits their practical use in DevOps.
3. RCA solutions work in isolation and do not coordinate with anomaly detection or remediation modules.

4. Self-healing mechanisms do not cover CI/CD pipelines, where failures directly affect software delivery.

5. There is limited use of multi-agent architectures for managing end-to-end autonomous DevOps operations.

6. There is no unified framework that combines predictive analytics, multi-agent collaboration, and full lifecycle
automation.

3. Problem Statement

Cloud-native DevOps pipelines have developed into complex systems that include microservices, containerized
workloads, and automated CI/CD stages. Even with improvements in monitoring and automation, these
pipelines still face frequent failures due to resource changes, misconfigurations, dependency errors, network
delays, and unexpected runtime issues. These failures spread quickly across connected components, causing
delays in deployment, service outages, and higher operational costs.

Current AlOps solutions mainly focus on detecting issues after they happen. Many tools offer insights like
anomaly alerts, log grouping, or root cause analysis suggestions, but they still depend heavily on human
operators for final decisions and fixes. This reliance leads to longer Mean Time to Detect (MTTD) and Mean
Time to Recover (MTTR), which hurt pipeline reliability and slow down releases. In addition, existing methods
work as separate modules rather than together within the CI/CD pipeline, limiting their ability to take prompt
and coordinated corrective actions.

Moreover, the predictive failure detection models in use today often do not connect well with automated
execution systems. This creates a large gap between predicting failures and recovering from them. Current self-
healing systems mainly deal with infrastructure-level issues, like restarting containers, without addressing
pipeline-level problems such as build failures, test errors, configuration issues, or deployment rollbacks.

As a result, we need a system that is integrated, autonomous, and collaborative, capable of:
1. Predicting possible failures before they affect pipeline performance.
2. Diagnosing root causes through smart analysis of logs, metrics, and event patterns.

3. Executing automated recovery actions with little human involvement.

http://kuwaitjournals.com 66

Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

4. Coordinating multiple smart agents to ensure that the entire pipeline remains resilient.
4. Proposed Methodology / System Architecture

The proposed Autonomous Multi-Agent AIOps Framework monitors, predicts, diagnoses, and recovers from
failures in cloud-native DevOps pipelines. This system combines machine learning-driven predictive analytics
with intelligent agents that work together to carry out self-healing actions. The design includes AIOps, multi-
agent systems (MAS), CI/CD automation, and cloud-native observability tools.

The methodology is based on four main pillars:

1. Data-Driven Observability

2. Predictive Analytics for Early Failure Detection
3. Collaborative Multi-Agent Decision-Making

4. Autonomous Self-Healing and Remediation
The system architecture consists of four layers:

- Observation Layer

- Intelligence Layer

- Coordination Layer

- Execution Layer

Each layer interacts with specialized agents to ensure ongoing and flexible management of pipeline health.
4.1 Multi-Agent Framework Description

The framework has four main intelligent agents. Each agent has its own specific tasks. They work together by
passing messages and sharing knowledge.

4.1.1 Data Collection Agent (DCA)

The DCA serves as the observability engine of the pipeline. Its tasks include:

- Collecting real-time data from logs, metrics, traces, build outputs, cluster telemetry, and CI/CD events
- Normalizing and structuring data using ELK/Kibana, Prometheus, and OpenTelemetry

- Streaming data to the AIOps pipeline for further analysis

- Detecting initial symptom patterns like latency spikes, build timeouts, pod crashes, and test failures
The DCA provides the foundation for predictive analytics by delivering high-quality, continuous data.
4.1.2 Anomaly Detection and Prediction Agent (ADPA)

The ADPA offers machine-learning tools to identify unusual patterns and potential risks. Its functions include:
- Detecting anomalies using ML models like LSTM, Autoencoders, and Isolation Forest

- Forecasting failures such as resource exhaustion, build instability, or API timeouts

- Assigning risk scores to different stages of the pipeline

- Sending predictive alerts before failures happen

This agent uses a mix of supervised and unsupervised learning techniques to improve accuracy.

4.1.3 Root Cause Analysis Agent (RCAA)

The RCAA is responsible for diagnosis and causal reasoning. It performs:

http://kuwaitjournals.com 67

Kuwait Journal of Advanced Computer Technology

ISSN: 2984-7907
Vol 4 Issue 1 (2026)

- Dependency graph analysis of microservices and pipeline stages

- Correlating anomalies with logs, traces, and error signatures

- Identifying the most likely cause of a predicted or ongoing failure

- Ranking potential causes using Bayesian inference and causal graphs

The RCAA reduces false alerts and gives actionable insights to the remediation agent.

4.1.4 Auto-Remediation Agent (ARA)

The ARA carries out autonomous self-healing actions based on RCA outputs. Its key responsibilities include:

- Triggering rollback, retry, pod restart, resource scaling, or pipeline re-run

- Running playbooks or workflows using Ansible, Jenkins, GitHub Actions, or ArgoCD

- Performing safe, policy-driven interventions

- Validating post-remediation success through feedback loops

The ARA completes the MAPE-K loop, ensuring ongoing autonomous recovery.

4.1.5 Agent Collaboration and Knowledge Base

A shared AIOps Knowledge Base stores:

- ML model outputs
- Historical anomalies
- Previous remediation actions

- Known problem signatures

Agents use message queues like Kafka or RabbitMQ for communication. They coordinate decisions through a

rule-based system.

4.2 Workflow Diagram (Textual Representation)

Full
Name

Agent
Abbreviation

Agent

DCA Data
Collection

Agent

ADPA Anomaly
Detection &
Prediction

Agent

RCAA Root Cause
Analysis

Agent

http://kuwaitjournals.com

Primary
Function
Collects,
normalizes, and
streams raw
observability data.

Uses ML models
to detect current

anomalies and
predict future
failures (e.g.,
SLA breach,

container crash).

Uses advanced
techniques (like
Causal Graphs,

Inputs
Source)

(Data

Observability
Data Stream
(Logs, Metrics,
Traces, Events)
from Cloud-
Native CI/CD.

Normalized
Data (from
DCA).

Predicted
Anomalies /
Risk Score

Key Outputs
(Destination)

Normalized
Data
ADPA).

(to

Predicted
Anomalies /
Risk Score (to
RCAA).

Actionable
Diagnosis
ARA).

(to

Research
Justification

Transforms
disparate data into a

raw,

usable format for Al
models.

Enables predictive
intelligence, shifting
the system from
reactive to proactive
monitoring.

Essential for multi-
agent collaboration,
as it ensures the

68

Kuwait Journal of Advanced Computer Technology

ISSN: 2984-7907
Vol 4 Issue 1 (2026)

ARA Auto-
Remediation

Agent

Decision
Agent/RL
Agent

(Implicit)

5. Experimental Setup

and potentially
LLMs) to
accurately

identify the
precise root
cause of the

predicted issue.

Executes
autonomous,
self-healing
actions based on
the diagnosis
(e.g., rollback,
scaling, hotfix).

Selects the
remediation
action by

best

evaluating

policies, risk, and
optimizing for
high reward (low
MTTR, high

success rate).

(from ADPA).

Actionable
Diagnosis (from
RCAA).

Predicted
Anomalies /
Risk Score,
Actionable
Diagnosis.

System
Returns to
Healthy State
(Feedback
Loop).

Remediation
Plan/Action
Command (to
ARA).

remediation action is

targeted and
effective, reducing
decision errors.
Reduces Mean
Time to Recovery
(MTTR)through
immediate,

automated actions.

Uses Reinforcement
Learning (RL) to
ensure the system is

The framework was implemented and tested in a simulated cloud-native DevOps environment using:

Infrastructure

- Kubernetes Cluster (3-node Minikube/Kind)

- Docker containers

- Jenkins and ArgoCD CI/CD pipeline

- Prometheus, Grafana, and Loki for monitoring

- ELK stack for log analytics

- Kafka for agent message passing

Datasets Used

- Real pipeline log datasets from Jenkins and GitHub Actions

- Kubernetes event logs

- Synthetic anomaly datasets for resource spikes, pod failures, and build errors

Machine Learning Models
- LSTM for failure prediction

- Autoencoders for anomaly detection

- Random Forest and Causal Graph for root cause analysis

http://kuwaitjournals.com

intelligent and
adaptive, not just
rule-based.

69

Kuwait Journal of Advanced Computer Technology
ISSN: 2984-7907
Vol 4 Issue 1 (2026)

Evaluation Metrics

- Mean Time to Detect (MTTD)

- Mean Time to Recover (MTTR)

- False Positive Rate (FPR)

- Pipeline Success Rate (%)

- System Downtime (minutes)

5.2 Discussion

The evaluation demonstrates that the multi-agent AIOps framework:

Detects failures significantly earlier than traditional monitoring
Recovers services automatically, with minimal manual intervention
Reduces noise and false alerts using RCA

Improves the resiliency and reliability of CI/CD pipelines

Enables a self-healing and autonomous DevOps workflow

6. Conclusion

This study presents an Autonomous Multi-Agent AIOps Framework that can predict, analyze, and fix failures in
cloud-native DevOps pipelines. The blend of machine learning, agent collaboration, and automated fixes results
in a proactive, self-healing CI/CD ecosystem. Future research might build on this work by using LLM-powered
RCA, reinforcement learning, and large-scale real-world deployments.

Reference

[1] Smith J, Kumar A. Cloud-Native Observability Systems. J Cloud Eng. 2021;12(3):110-123.

[2] Wang Y, et al. Microservices Architecture for Scalable DevOps. IEEE Trans Serv Comput.
2020;13(4):760-772.

[3] Jones P. Modern Monitoring Pitfalls in CI/CD. DevOps J. 2022;5(2):44-59.

[4] Liao Q. Multi-Agent Systems for Distributed Intelligence. ACM Comput Surv. 2019;52(6):1-32.

[5] Gupta S. Kubernetes-Native Resilience Patterns. Cloud Syst Rev. 2020;8(1):19-29.

[6] Sharma V. DevOps Automation and Pipeline Optimization. Softw Eng Rev. 2021;32(1):100-112.

[7] Patel R. Machine Learning Applications in AIOps. IEEE Intell Syst. 2022;37(2):55-67.

[8] Bellifemine F. Foundations of Intelligent Agents. Multiagent Syst J. 2018;24(3):300-314.

[9] Zhang L. Predictive ML Models for System Failures. J Big Data Anal. 2020;7(2):89-105.

[10] Kephart J. Autonomic Computing Architecture. IBM Syst J. 2003;42(1):10-21.

[11] Gartner Research. AIOps Market Analysis. 2021.

[12] Lee H, et al. Deep Learning for Anomaly Detection in Cloud Systems. IEEE Cloud Comput.
2020;7(4):35-48.

[13] Arora D. Automated RCA using Bayesian Methods. J Syst Reliab. 2021;9(1):50-61.

[14] Kubernetes Docs. Self-Healing Mechanisms in Modern Orchestration. 2022.

[15] Singh A. Agent-Based Automation for IT Operations. ACM SIGOPS. 2019;53(2):75-88.

http://kuwaitjournals.com

70

