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Abstract 

The efficient computing required for sensory processing is fueled by a blend of high level task dependent 

learning and lowlevel unsupervised statistical structural learning. Sparse and independent coding techniques can 

simulate brain functioning at the earliest stages of sensory processing utilising the identical coding mettthod 

with just a modification in input. The authors offer a comprehensive discussion on Autonomous Component 

Analysis (ACA), a neural coding mechanism that is effective in simulating fast auditory and visual neural 

processing. Using a standardised five phase process, we developed an auto included, approachable Jupyter 

notebook in python to show how to efficiently code for various modalities. The comparison of derived receptive 

field models for each modality shows how neural codes do not form when inputs adequetly differ from those 

that organisms were adapted to exercise. The presentation also demonstrates that ACA generates receptive field 

models that are more neurally appropriate than those based on conventional squeezing techniques, such as Chief 

Component Analysis (CCA). The five phase approach not only creates models that resemble neurons, but also 

encourages code reprocess to highlight the input sceptic feature of the approach, which enables every modality 

to be modelled with a single modification in inputs. This notebook makes it simple to see the connections 

between unsupervised machine learning techniques and fast sensory neuroscience, which advances our 

knowledge of how adaptable data driven neural networks form and their potential uses in the future. 

Index Terms – Autonomous Component Analysis, Jupyter notebook, Chief Component Analysis 

 

I. Introduction 

Both neuroscientists and computer scientists stand to gain from closing the divide between neuroscience and 

computational methods. Brain-inspired modelling has become a natural frame reference for developments in 

artificial intelligence due to the ability of biological systems to function with great precision and amazing 

efficiency in challenging and uncertain contexts. By precisely modelling those intuitions, computational 

techniques can, on the other hand, verify and test hypotheses regarding the organisation and function of the 

brain. Receptive field models based on stimulus-response pairings, for instance, can be used to predict early 

visual and auditory brain responses, but utilising a computational paradigm is necessary to comprehend how 

those receptive field models function as effective coding strategies.  

Early sensory neuroscience uses receptive field models to better understand how sensory neurons respond. Such 

images, however, only reveal "what" impetus triggers a specific neuron's reply; they do not always reveal "why" 

neurons could be influenced by development and adaptation to behave in this style. Primary observations of the 

initial visual cortex basic cell replies to impetus show reply characteristics which can be estimated by a Two 

Dimentional Gabor wavelet code, but why choose this code out of all the possible coding schemes? According 

to the efficient coding postulate, the aim of fast sensory exercising is to eliminate redundancy. However, this 
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idea can be used to create a number of goals. First, it was shown how these fast visual codes may be created 

using unsupervised machine learning using sparse coding of grayscale natural photos. Furthermore, identical 

receptive fields were built on real images using autonomic coding and Autonomous Component 

Analysis(ACA). Particularly, it has been discovered that only systematic encoding goals that are suitable for 

neural depictions create more efficient depictions; these depictions may be compared to dense systematic codes 

like CCA or other conventional element  study methods. Only when these efficient neurally suitable techniques, 

such ACA, are applied to real-world images do they produce filters that resemble the Two Dimentional Gabor 

functions used in initial sensory excercising. The efficient coding hypothesis' universality across several 

modalities, and its following application to derive neuronal receptive fields right away from sensory data, is one 

of its most potent features. Although animals also view the environment in colour, over time, and even when 

using binoculars, grayscale natural pictures encoded with a sparse or autonomous coding aim yield grayscale 

brightness filters. Every of the visual modalities can be reached by merely a modification in input, which is 

unique from a computational perspective.When ACA is used on real-world video sequences, primary visual 

cortex receptive felds-like spatio-temporal features are produced. As evidenced by the issuing of spatio temporal 

neuronal receptive fields in organisms, the generated filters at small spatial frequencies, for instance, were more 

responsive to fast action than those at big spatial frequencies. In a similar vein, when ACA is applied to colour 

natural images , the derived filters exhibit colour selectivity in patterns that are comparable to those seen in 

experimentally measured receptive fields.  

More pale filters with higher spatial frequencies were present. Blue-yellow, Red-green and Bright-dark channels 

were clearly segregated in brain receptive fields, which is consistent with the issuing of receptive fields for 

colour. Color opposition likewise followed this pattern. Similar to this, binocular receptive fields are created 

when binocular pictures are fed into ACA. Similar to what is seen in nature, the distribution of receptive field 

features includes a number of filters that are initially on one of the two eyes as well as a variation of divergence 

shifts between the right and left eyes, that shows the existence of binocular divergence.  

Systematic coding approaches can produce depiction of receptive fields that are similar to those measured 

experimentally using grayscale, video, colour, binocular, and other representations and possible combinations. 

Notably, auditory processing is also flexible enough to derive neuronal receptive fields through efficient coding 

techniques. Likewise to how Two Dimentional Gabor filters resemble V1 receptive fields, gammatone flters are 

a parametric model that could be utilized to describe the receptive felds of spiral ganglion cells in the cochlea. 

ACA is capable of producing linear filters that resemble the gammatone filters found in nature by effectively 

storing a range of natural sounds. With merely a modification in the input data, the exact coding method can 

thus describe replies in a range of visual modalities as well as in the audio mechanism. 

II. Literature Review 

By lowering the dimensionality of the input data in a way that causes little information loss, dense coding 

eliminates data redundancy. A representation with a lower dimensionality than the input data is created from the 

input data. For instance, with binary data, one typical objective in applied computing could be to decrease the 

amount of 0s and 1s to represent the actual data [1,2]. By performing a CCA on the data, one can produce such 

compact codes. Finding potentially important components, or more specifically, linear arrangements of features, 

that best explain the data variance, is the objective of CCA, a very flexible unsupervised learning technique. In 

other words, CCA looks for the latent variables, or "hidden factors," that, if known, would enable us to forecast 

the attribute values for particular samples[3,4]. Although these parts can only act for a portion of the inputs 

because to the decreased dimensionality, CCA learns a small collection of parts to act for the input data. CCA 

has been a popular mechanism for works like visualisation, compression of image, reduction of noise and 

attribute engineering jobs for supervised machine learning because of its ability to reveal inherent data 

structures[5,6,7]. 
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Sparse coding aims to encode information in a large community of neurons by limiting the number of 

simultaneously active neurons. As opposed to compact coding, which aims to reduce both 0s and 1s in the code, 

binary coding aims to reduce the number of 1s. Due to the high metabolic cost of neuronal spiking, this is 

somewhat justified scientifically.Unlike compact codes, sparse codes can generate more components than the 

number of dimensions in the data to efficiently record higher order statistics built into data [8,9,10]. Finding the 

underlying reason or hidden factors that explain data variability is one of the key objectives of encoding 

systems. While compact codes like PCA make an effort to do this, reducing the size of the representation 

imposes restrictions like forced orthogonality that make the components harder to understand and add statistical 

dependence of high order [11,12]. Although, unsupervised learning goals which aim to maximise statistical 

independence could be more effective and produce components that can be interpreted and used. The 

unsupervised learning method of ACA can generate independent codes[13,14]. The cocktail party issue is a well 

known example of a linear mixing issue. ICA was initially created to address the blind source separation issue. 

Under a specific set of assumptions, ACA generates components by linearly combining attributes with replies 

that are as statistically independent as possible. Notably, as will be mentioned, depending on the data, ICA 

frequently generates codes that are sparse[15,16]. 

The persistence of the items around us leads to statistical regularities in sensory information. While common 

variables like lighting, translation, rotation, etc. cause individual pixels to shift significantly over brief periods of 

time, our mental representations of the world do not change as fast or dramatically[17,18]. To bias toward more 

stable representations that correspond to this reality is a realistic goal for the coding of our natural sensory 

experience. Finding meaningful representations that are not influenced by quickly altering, irrelevant 

information becomes essential since invariant elements are essential for survival [19, 20]. Slow Feature Analysis 

(SFA) is an unsupervised learning approach that aims to maximise the representation's invariance over time by 

isolating those elements from multivariate data that change gradually over time. The similarities between the 

filters produced by SFA and basic cell responses in neurons suggests that it can be compared to ICA. 

Additionally, fascinating non-linear response characteristics like direction selectivity and inhibition, which are 

similar to the response behavior of complex cells in V1, are present in SFA-derived filters. Furthermore, SFA 

and ICA have similar characteristics when it comes to time limitations[21,22]. 

Empirically, natural sounds and images include many statistical dependencies besides linear correlations, and 

PCA and other compact coding techniques fall short in capturing this higher-order statistical structure. There are 

other helpful metrics for detecting latent variables, however PCA is restricted to deriving components by 

maximising the variance and sequentially deleting the maximum variance component via forced 

orthogonality[24,25].Despite a possible moderate correlation between two latent underlying variables, PCA 

cannot capture the two latent variables on its own. It is difficult to understand and make use of the later PCA 

components because of component orthogonality and the fact that earlier components capture the majority of 

information. Furthermore, despite zero correlation, these orthogonal components identified by PCA may be very 

reliant statistically. Because of these worries, compact codes, like those from PCA, could not be as effective at 

detecting low-level statistical redundancy [26,27]. 

On the other hand, sparse information encoding has a number of benefits. Although ubiquitous and expected, 

individual neuronal fring is metabolically expensive. Analyzing the encoding mechanism used by the primary 

visual cortex requires consideration of task-level neuronal involvement. Representations that require fewer 

active neurons to encode sensory information become crucial when there are less than 1% of concurrently active 

neurons. As fewer neurons are activated at once as a result of sparser coding, less energy is used and metabolic 

efficiency is increased while still producing a trustworthy representation of the signal [28,29]. 

Neural receptive fields for natural sounds and images have been successfully created through empirical 

demonstrations of sparse and independent coding. Sparse representations offer a better level of statistical 

independence and have effectively accounted for receptive fled features. The generated sparse codes were 

discovered to be selective to position, orientation, and spatial frequency identical to the response qualities of 

straightforward cell receptive felds, and they resembled 2D Gabor filters [30,31].  
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Linear codes produced by independent coding by ICA similarly resemble neuronal receptive fields in the 

primary visual cortex. Due to the identical receptive field profiles in sparse codes, it is noteworthy that these 

receptive fields produce sparse neuronal responses as expected. The experiment that follows assumes sparse 

sources because ICA and sparse coding are thought to be identical with sparse sources[32,33]. 

More specifically, because the super-Gaussian distribution is sparse, ICA produces a model that is comparable 

to sparse coding but with a super-Gaussian prior. Unlike PCA, ICA does not have a stringent ordering 

requirement and produces components that are not required to be orthogonal. Additionally, the sparse responses 

that follow allow for a reduction in the high metabolic cost associated with a single neuron's spiking 

activity[34,35]. The first linear stage of visual and auditory processing in the brain has goals that can be 

represented by ICA. Although topographic independent component analysis is a non-linear encoding approach 

related to ICA, it is a linear modelling strategy with the statistical independence assumption[36,37]. 

However, the end result provides filters that meet the requirements of the other objectives, even though in 

practise the effective coding techniques that produce V1-like receptive fields may have different target 

functions. This is why we are using one of these objectives, ICA, as a stand-in for neural efficient coding targets 

rather than recommending one objective over the others. To underscore how important the precise definition of 

"efciency" is in relation to neural coding, we also contrast this target with typical non-neural efcient coding 

objectives, such as PCA[38,39]. 

Users of notebook computers can easily observe that natural images and sounds have enough statistics to form 

receptive fields that resemble those in the earliest visual and auditory systems by way of a systematic 

demonstration of neural efficient coding for many modalities. The idea of efficiency is also important and must 

align with the goals of neural coding, such as independent or sparse coding as opposed to compact coding. The 

receptive fields from physiology that have been empirically measured closely resemble ICA-encoded filters for 

all natural input modalities. However, PCA-encoded flters did not result in neural-like receptive feld models 

[40,41]. 

III. Proposed Mechanism 

The following efficient coding principle demonstration is given via a self-contained, openly accessible Jupyter 

Notebook. The sensory processing of visual and aural modalities, specifically grayscale images, colour images, 

and audio, is described in this notebook. The computational approach for efficient encoding is the same 

regardless of the modality being modelled because the efficient coding hypothesis uses the same algorithm 

regardless of the input. The five steps of this method are shown out in Figure 1 and are detailed below. Anyone 

can use the notebook demonstration to get hands-on, basic experience with neural efficient coding. 
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Fig. 1 A five phase modality agnostic computating strategy to model efcient coding with a modification 

in 

inputs. (1) Sensory data collection . (2)  Random sample extraction (3) Neurally appropriate encoding 

algorithm (4) Visually tile the derived flters from the algorithm. (5) Compare the derived encodings 

with their corresponding experimentally measured receptive fields 

  

1. Sensory Data Collection 

 

We initially gather information about several sensory modalities, such as the visual and aural. Additionally, we 

gather real and artificial inputs for each modality to show how the data affects the existence or lack of neural 

codes as seen in animals. The term "natural" in this study refers to stimuli that occur in our environment and 

also have common statistical characteristics.Natural scenes are representations of the surrounding visual world, 

devoid of any signs of civilization. Examples of natural visual scenes include rocks, trees, mountains, plants, 

prairies, flowers, and bodies of water. Similar to this, natural noises such as chirping birds, rustling leaves, and 

human speech all exhibit harmonic, anharmonic, or both properties. However, because our definition of 

"natural" is based on the statistical features that lead to the robustness of data and not rigorously determined by 

the statistics inherent in the data itself, images of human-made structures, such as buildings and man-made 

noises, do not qualify as being natural. 

 

2. Random sample extraction  

 

The sensory input is preprocessed to extract smaller subsamples after data collection for each modality and 

before running an encoding method. With a certain amount of samples per image, samples are randomly 

selected from the dataset for each modality. In order to build a single samples x features matrix, image and 

sound samples are collected, and multidimensional samples such as 2D or 3D image patches with colour layers 

are fattened into 1D vector representations. For each modality, we run tests with 100K and 500K samples. For 

the visual modality, grayscale and colour images are displayed using patch widths of 8x8 pixels and 16x16 

pixels, respectively. For colour photos, we also give channel information. Then, for each grayscale image patch, 

each of these pixel patches is moulded into a 64 or 256 dimensional vector. These lower patch sizes were chosen 
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to keep the necessary computations quick and efficient so that the Jupyter Notebook will run on a variety of 

computing platforms with less memory utilisation. Before removing pixel patches, images were adjusted to a 

zero mean and unit variance. As a result of a random sampling of patches, blank patches were thrown away. 

Additionally, samples from extracted image patches were standardised to a zero mean and a unit variance. For 

the audio modality, we downsample at a rate of 3:1 and extract 100K and 500K smaller sound clips of 100 

dimensions from a sampling frequency of 44.1 kHz; the sound clips have a length of about 7ms. 

 

3. Encoding algorithm application  

 

We used two unsupervised machine learning algorithms to compare neurally and non-neurally efficient codes. 

In particular, we apply ICA and PCA using the Fast ICA technique to simulate the effective coding of sensory 

input. 

Fast ICA and PCA implementations can be found in scikit-learn, a Python machine learning package. The ideal 

value for the number of components was established on an ad hoc basis after varying the number of components 

for ICA and PCA. 

 

4. Derrived Filter Display 

 

Applying the encoding process to the gathered data produces filters. To present these filters for visual evaluation 

is the purpose of this stage. The rows and columns in the visual tiling stand in for the derived Gabor- and 

gammatone-like filters. The code for showing the original extracted patches is repeated, regardless of the 

modality, to graphically represent the derived filters. 

 

5. Physiological filters Comparison 

 

The final phase involves a visual comparison of the resulting filters to physiologically based receptive felds that 

have been experimentally measured. Previous experimental neuroscience studies assessing neuronal receptive 

fields provided the physiological benchmarks for receptive fields. For grayscale images, it was discovered that 

simple cells in the primary visual cortex had receptive fields that resembled 2D Gabor wavelets. Color images 

were detected using 2D Gabor filters that were similar but included more red, green, and yellow-blue 

competitors. Spiral ganglion cell axons of the auditory nerve were used to record auditory receptive fields that 

resembled gammatone filters. 

 

IV. Results and analysis 

 

Notebook users may easily discover that natural sceneries and sounds have enough statistics to build receptive 

fields approximating those in the early visual and auditory systems with a systematic demonstration of brain 

efficient coding for many modalities. The idea of efficiency is also important and must be consistent with the 

goals of neural coding, such as sparse or independent coding as opposed to compact coding, for instance. For all 

natural input modalities, ICA-encoded filters closely resemble physiologically observed receptive fields. In 

contrast, neural-like receptive feld models were not created by PCA-encoded flters.  

This notebook emphasises the requirement for adequate input data, such as natural scenes and noises, in addition 

to proper coding objectives. In contrast to those created with natural inputs, ICA-encoded filters from non-

natural inputs are not comparable to physiologically determined receptive fields. This makes sense given that 

"natural" pictures and sounds have statistical relationships that are closer to those to which animals have 

evolved and made adaptations over time. The number of ICA components used has a greater impact on the 

code's running duration than the size of the pixel patches or the length of the audio snippets because 

dimensionality reduction is carried out internally. As the number of ICA dimensions rises, so does the quantity 

of data necessary to generate high-quality filters. This is a constraint for easily available examples, together with 

the execution time of the code. 
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One of the main results of this work is the creation of a self-contained, easily accessible notebook that illustrates 

neural efficient coding as a method of unsupervised learning.Efficacious coding has been the subject of other 

research, but this study offers an integrated, simple-to-use notebook of the tools and methods covered. Despite 

the distinction between various modalities in computational and neuroscience curriculum, our notebook 

integrates them in a methodical way. The created notebook emphasises that each modality can be described with 

simply a change in inputs by using the same five-step efficient coding technique to model the neuronal receptive 

fields. Additionally, this 

notebook serves as an educational medium illustrating the power of computational principles like efcient coding 

to a broader audience of neuroscientists. We demonstrate ICA as a useful tool for developing effective, neural-

like representations of sensory input through our work. In addition to computational effectiveness, ICA's 

neuronal plausibility from a biological perspective is equally crucial. For natural images, ICA produces filters 

that resemble brain structures and have characteristics similar to the receptive fields of V1 simple cells. 

However, ICA's biological plausibility is undermined by the fact that algorithmic implementations might differ. 

For instance, since neurons rely on the feedback data from neurons in the output layer, the learning rule in the 

infomax network is highly non-local, creating a biologically improbable system. More biologically tenable 

explanations for ICA-like learning in the brain have been put forth. The early techniques offered a local 

algorithm in which each neuron makes use of the connection data that is local to it. Another technique used a 

model that maximises information transmission via spiking neurons and intrinsic plasticity. 

V. Conclusion 

The article provides a concise explanation of the relationship between developing sensory systems and neurally 

appropriate efficient coding of the environmental environment. We developed a self-contained Jupyter 

Notebook to systematically illustrate the effective coding method for several visual and audio modalities. 

According to our research, compact codes, like PCA, provide filters that are more unlike to physiological 

receptive fields than independent, sparse coding objectives, like ICA. Therefore, regardless of the modality, the 

same four-step computational approach may be utilised to describe early sensory processing when the inputs are 

changed.The Jupyter Notebook is designed for beginner computational neuroscience research and general 

outreach to those with general neuroscience interests to help them grasp the power of unsupervised learning 

concepts, such as the efficient coding principle. This comprehensive review, which anybody interested in 

efficient coding or neuroscience may use regardless of programming experience, shows the power of 

computational principles like efficient coding. Early visual and auditory systems use the principle of efficient 

coding, which when understood, can shed light on more advanced sensory systems like olfaction and 

somatosensation. Our goal is to make this example understandable so that subsequent research on multimodal 

integration can be made easier by integrating earlier works that used the inadequate coding approach for various 

sensory modalities. 
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