

Production of Neural Receptive Field Due to Unsupervised Learning in Images and Audio

Dr. Abdul Jabbar Khilji¹, Dr. Pawan Kumar Tanwar², Dr. Vishal Goar³

¹Assistant Professor, Engineering College Bikaner

²Assistant Professor, Engineering College Bikaner

³Assistant Professor, Engineering College Bikaner

¹dr.abduljabbar@gmail.com, ²pktbkn@gmail.com, ³dr.vishalgoar@gmail.com

Submitted: 05/12/2025

Revised: 18/12/2025

Published: 28/12/2025

Abstract

The efficient computing required for sensory processing is fueled by a blend of high level task dependent learning and lowlevel unsupervised statistical structural learning. Sparse and independent coding techniques can simulate brain functioning at the earliest stages of sensory processing utilising the identical coding mettthod with just a modification in input. The authors offer a comprehensive discussion on Autonomous Component Analysis (ACA), a neural coding mechanism that is effective in simulating fast auditory and visual neural processing. Using a standardised five phase process, we developed an auto included, approachable Jupyter notebook in python to show how to efficiently code for various modalities. The comparison of derived receptive field models for each modality shows how neural codes do not form when inputs adequately differ from those that organisms were adapted to exercise. The presentation also demonstrates that ACA generates receptive field models that are more neurally appropriate than those based on conventional squeezing techniques, such as Chief Component Analysis (CCA). The five phase approach not only creates models that resemble neurons, but also encourages code reprocess to highlight the input sceptic feature of the approach, which enables every modality to be modelled with a single modification in inputs. This notebook makes it simple to see the connections between unsupervised machine learning techniques and fast sensory neuroscience, which advances our knowledge of how adaptable data driven neural networks form and their potential uses in the future.

Index Terms – Autonomous Component Analysis, Jupyter notebook, Chief Component Analysis

I. Introduction

Both neuroscientists and computer scientists stand to gain from closing the divide between neuroscience and computational methods. Brain-inspired modelling has become a natural frame reference for developments in artificial intelligence due to the ability of biological systems to function with great precision and amazing efficiency in challenging and uncertain contexts. By precisely modelling those intuitions, computational techniques can, on the other hand, verify and test hypotheses regarding the organisation and function of the brain. Receptive field models based on stimulus-response pairings, for instance, can be used to predict early visual and auditory brain responses, but utilising a computational paradigm is necessary to comprehend how those receptive field models function as effective coding strategies.

Early sensory neuroscience uses receptive field models to better understand how sensory neurons respond. Such images, however, only reveal "what" impetus triggers a specific neuron's reply; they do not always reveal "why" neurons could be influenced by development and adaptation to behave in this style. Primary observations of the initial visual cortex basic cell replies to impetus show reply characteristics which can be estimated by a Two Dimentional Gabor wavelet code, but why choose this code out of all the possible coding schemes? According to the efficient coding postulate, the aim of fast sensory exercising is to eliminate redundancy. However, this

idea can be used to create a number of goals. First, it was shown how these fast visual codes may be created using unsupervised machine learning using sparse coding of grayscale natural photos. Furthermore, identical receptive fields were built on real images using autonomic coding and Autonomous Component Analysis(ACA). Particularly, it has been discovered that only systematic encoding goals that are suitable for neural depictions create more efficient depictions; these depictions may be compared to dense systematic codes like CCA or other conventional element study methods. Only when these efficient neurally suitable techniques, such ACA, are applied to real-world images do they produce filters that resemble the Two Dimentional Gabor functions used in initial sensory excercising. The efficient coding hypothesis' universality across several modalities, and its following application to derive neuronal receptive fields right away from sensory data, is one of its most potent features. Although animals also view the environment in colour, over time, and even when using binoculars, grayscale natural pictures encoded with a sparse or autonomous coding aim yield grayscale brightness filters. Every of the visual modalities can be reached by merely a modification in input, which is unique from a computational perspective. When ACA is used on real-world video sequences, primary visual cortex receptive felds-like spatio-temporal features are produced. As evidenced by the issuing of spatio temporal neuronal receptive fields in organisms, the generated filters at small spatial frequencies, for instance, were more responsive to fast action than those at big spatial frequencies. In a similar vein, when ACA is applied to colour natural images , the derived filters exhibit colour selectivity in patterns that are comparable to those seen in experimentally measured receptive fields.

More pale filters with higher spatial frequencies were present. Blue-yellow, Red-green and Bright-dark channels were clearly segregated in brain receptive fields, which is consistent with the issuing of receptive fields for colour. Color opposition likewise followed this pattern. Similar to this, binocular receptive fields are created when binocular pictures are fed into ACA. Similar to what is seen in nature, the distribution of receptive field features includes a number of filters that are initially on one of the two eyes as well as a variation of divergence shifts between the right and left eyes, that shows the existence of binocular divergence.

Systematic coding approaches can produce depiction of receptive fields that are similar to those measured experimentally using grayscale, video, colour, binocular, and other representations and possible combinations. Notably, auditory processing is also flexible enough to derive neuronal receptive fields through efficient coding techniques. Likewise to how Two Dimentional Gabor filters resemble V1 receptive fields, gammatone filters are a parametric model that could be utilized to describe the receptive felds of spiral ganglion cells in the cochlea.

ACA is capable of producing linear filters that resemble the gammatone filters found in nature by effectively storing a range of natural sounds. With merely a modification in the input data, the exact coding method can thus describe replies in a range of visual modalities as well as in the audio mechanism.

II. Literature Review

By lowering the dimensionality of the input data in a way that causes little information loss, dense coding eliminates data redundancy. A representation with a lower dimensionality than the input data is created from the input data. For instance, with binary data, one typical objective in applied computing could be to decrease the amount of 0s and 1s to represent the actual data [1,2]. By performing a CCA on the data, one can produce such compact codes. Finding potentially important components, or more specifically, linear arrangements of features, that best explain the data variance, is the objective of CCA, a very flexible unsupervised learning technique. In other words, CCA looks for the latent variables, or "hidden factors," that, if known, would enable us to forecast the attribute values for particular samples[3,4]. Although these parts can only act for a portion of the inputs because to the decreased dimensionality, CCA learns a small collection of parts to act for the input data. CCA has been a popular mechanism for works like visualisation, compression of image, reduction of noise and attribute engineering jobs for supervised machine learning because of its ability to reveal inherent data structures[5,6,7].

Sparse coding aims to encode information in a large community of neurons by limiting the number of simultaneously active neurons. As opposed to compact coding, which aims to reduce both 0s and 1s in the code, binary coding aims to reduce the number of 1s. Due to the high metabolic cost of neuronal spiking, this is somewhat justified scientifically. Unlike compact codes, sparse codes can generate more components than the number of dimensions in the data to efficiently record higher order statistics built into data [8,9,10]. Finding the underlying reason or hidden factors that explain data variability is one of the key objectives of encoding systems. While compact codes like PCA make an effort to do this, reducing the size of the representation imposes restrictions like forced orthogonality that make the components harder to understand and add statistical dependence of high order [11,12]. Although, unsupervised learning goals which aim to maximise statistical independence could be more effective and produce components that can be interpreted and used. The unsupervised learning method of ACA can generate independent codes[13,14]. The cocktail party issue is a well known example of a linear mixing issue. ICA was initially created to address the blind source separation issue. Under a specific set of assumptions, ACA generates components by linearly combining attributes with replies that are as statistically independent as possible. Notably, as will be mentioned, depending on the data, ICA frequently generates codes that are sparse[15,16].

The persistence of the items around us leads to statistical regularities in sensory information. While common variables like lighting, translation, rotation, etc. cause individual pixels to shift significantly over brief periods of time, our mental representations of the world do not change as fast or dramatically[17,18]. To bias toward more stable representations that correspond to this reality is a realistic goal for the coding of our natural sensory experience. Finding meaningful representations that are not influenced by quickly altering, irrelevant information becomes essential since invariant elements are essential for survival [19, 20]. Slow Feature Analysis (SFA) is an unsupervised learning approach that aims to maximise the representation's invariance over time by isolating those elements from multivariate data that change gradually over time. The similarities between the filters produced by SFA and basic cell responses in neurons suggests that it can be compared to ICA. Additionally, fascinating non-linear response characteristics like direction selectivity and inhibition, which are similar to the response behavior of complex cells in V1, are present in SFA-derived filters. Furthermore, SFA and ICA have similar characteristics when it comes to time limitations[21,22].

Empirically, natural sounds and images include many statistical dependencies besides linear correlations, and PCA and other compact coding techniques fall short in capturing this higher-order statistical structure. There are other helpful metrics for detecting latent variables, however PCA is restricted to deriving components by maximising the variance and sequentially deleting the maximum variance component via forced orthogonality[24,25]. Despite a possible moderate correlation between two latent underlying variables, PCA cannot capture the two latent variables on its own. It is difficult to understand and make use of the later PCA components because of component orthogonality and the fact that earlier components capture the majority of information. Furthermore, despite zero correlation, these orthogonal components identified by PCA may be very reliant statistically. Because of these worries, compact codes, like those from PCA, could not be as effective at detecting low-level statistical redundancy [26,27].

On the other hand, sparse information encoding has a number of benefits. Although ubiquitous and expected, individual neuronal firing is metabolically expensive. Analyzing the encoding mechanism used by the primary visual cortex requires consideration of task-level neuronal involvement. Representations that require fewer active neurons to encode sensory information become crucial when there are less than 1% of concurrently active neurons. As fewer neurons are activated at once as a result of sparser coding, less energy is used and metabolic efficiency is increased while still producing a trustworthy representation of the signal [28,29].

Neural receptive fields for natural sounds and images have been successfully created through empirical demonstrations of sparse and independent coding. Sparse representations offer a better level of statistical independence and have effectively accounted for receptive field features. The generated sparse codes were discovered to be selective to position, orientation, and spatial frequency identical to the response qualities of straightforward cell receptive fields, and they resembled 2D Gabor filters [30,31].

Linear codes produced by independent coding by ICA similarly resemble neuronal receptive fields in the primary visual cortex. Due to the identical receptive field profiles in sparse codes, it is noteworthy that these receptive fields produce sparse neuronal responses as expected. The experiment that follows assumes sparse sources because ICA and sparse coding are thought to be identical with sparse sources[32,33].

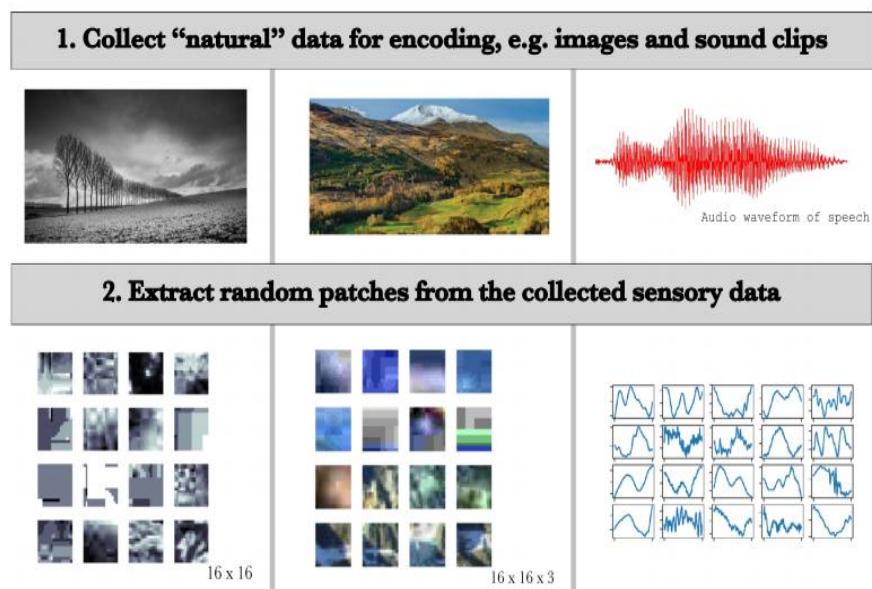
More specifically, because the super-Gaussian distribution is sparse, ICA produces a model that is comparable to sparse coding but with a super-Gaussian prior. Unlike PCA, ICA does not have a stringent ordering requirement and produces components that are not required to be orthogonal. Additionally, the sparse responses that follow allow for a reduction in the high metabolic cost associated with a single neuron's spiking activity[34,35]. The first linear stage of visual and auditory processing in the brain has goals that can be represented by ICA. Although topographic independent component analysis is a non-linear encoding approach related to ICA, it is a linear modelling strategy with the statistical independence assumption[36,37].

However, the end result provides filters that meet the requirements of the other objectives, even though in practise the effective coding techniques that produce V1-like receptive fields may have different target functions. This is why we are using one of these objectives, ICA, as a stand-in for neural efficient coding targets rather than recommending one objective over the others. To underscore how important the precise definition of "efciency" is in relation to neural coding, we also contrast this target with typical non-neural efcient coding objectives, such as PCA[38,39].

Users of notebook computers can easily observe that natural images and sounds have enough statistics to form receptive fields that resemble those in the earliest visual and auditory systems by way of a systematic demonstration of neural efficient coding for many modalities. The idea of efficiency is also important and must align with the goals of neural coding, such as independent or sparse coding as opposed to compact coding. The receptive fields from physiology that have been empirically measured closely resemble ICA-encoded filters for all natural input modalities. However, PCA-encoded flters did not result in neural-like receptive feld models [40,41].

III. Proposed Mechanism

The following efficient coding principle demonstration is given via a self-contained, openly accessible Jupyter Notebook. The sensory processing of visual and aural modalities, specifically grayscale images, colour images, and audio, is described in this notebook. The computational approach for efficient encoding is the same regardless of the modality being modelled because the efficient coding hypothesis uses the same algorithm regardless of the input. The five steps of this method are shown out in Figure 1 and are detailed below. Anyone can use the notebook demonstration to get hands-on, basic experience with neural efficient coding.



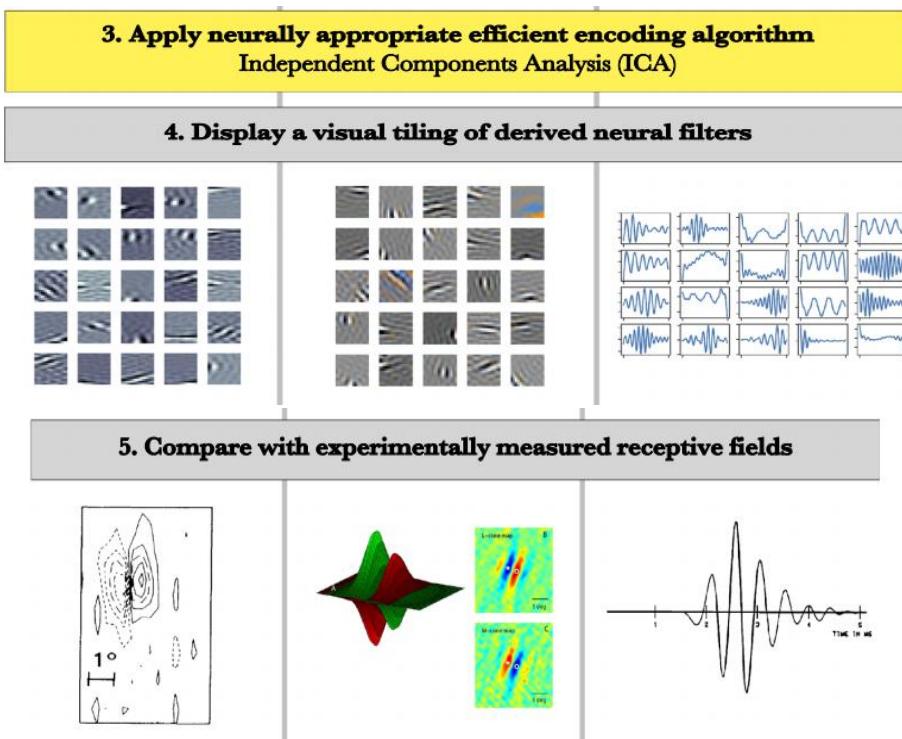


Fig. 1 A five phase modality agnostic computing strategy to model efficient coding with a modification in inputs. (1) Sensory data collection . (2) Random sample extraction (3) Neurally appropriate encoding algorithm (4) Visually tile the derived filters from the algorithm. (5) Compare the derived encodings with their corresponding experimentally measured receptive fields

1. Sensory Data Collection

We initially gather information about several sensory modalities, such as the visual and aural. Additionally, we gather real and artificial inputs for each modality to show how the data affects the existence or lack of neural codes as seen in animals. The term "natural" in this study refers to stimuli that occur in our environment and also have common statistical characteristics. Natural scenes are representations of the surrounding visual world, devoid of any signs of civilization. Examples of natural visual scenes include rocks, trees, mountains, plants, prairies, flowers, and bodies of water. Similar to this, natural noises such as chirping birds, rustling leaves, and human speech all exhibit harmonic, anharmonic, or both properties. However, because our definition of "natural" is based on the statistical features that lead to the robustness of data and not rigorously determined by the statistics inherent in the data itself, images of human-made structures, such as buildings and man-made noises, do not qualify as being natural.

2. Random sample extraction

The sensory input is preprocessed to extract smaller subsamples after data collection for each modality and before running an encoding method. With a certain amount of samples per image, samples are randomly selected from the dataset for each modality. In order to build a single samples x features matrix, image and sound samples are collected, and multidimensional samples such as 2D or 3D image patches with colour layers are flattened into 1D vector representations. For each modality, we run tests with 100K and 500K samples. For the visual modality, grayscale and colour images are displayed using patch widths of 8x8 pixels and 16x16 pixels, respectively. For colour photos, we also give channel information. Then, for each grayscale image patch, each of these pixel patches is moulded into a 64 or 256 dimensional vector. These lower patch sizes were chosen

to keep the necessary computations quick and efficient so that the Jupyter Notebook will run on a variety of computing platforms with less memory utilisation. Before removing pixel patches, images were adjusted to a zero mean and unit variance. As a result of a random sampling of patches, blank patches were thrown away. Additionally, samples from extracted image patches were standardised to a zero mean and a unit variance. For the audio modality, we downsample at a rate of 3:1 and extract 100K and 500K smaller sound clips of 100 dimensions from a sampling frequency of 44.1 kHz; the sound clips have a length of about 7ms.

3. Encoding algorithm application

We used two unsupervised machine learning algorithms to compare neurally and non-neurally efficient codes. In particular, we apply ICA and PCA using the Fast ICA technique to simulate the effective coding of sensory input.

Fast ICA and PCA implementations can be found in scikit-learn, a Python machine learning package. The ideal value for the number of components was established on an ad hoc basis after varying the number of components for ICA and PCA.

4. Derived Filter Display

Applying the encoding process to the gathered data produces filters. To present these filters for visual evaluation is the purpose of this stage. The rows and columns in the visual tiling stand in for the derived Gabor- and gammatone-like filters. The code for showing the original extracted patches is repeated, regardless of the modality, to graphically represent the derived filters.

5. Physiological filters Comparison

The final phase involves a visual comparison of the resulting filters to physiologically based receptive fields that have been experimentally measured. Previous experimental neuroscience studies assessing neuronal receptive fields provided the physiological benchmarks for receptive fields. For grayscale images, it was discovered that simple cells in the primary visual cortex had receptive fields that resembled 2D Gabor wavelets. Color images were detected using 2D Gabor filters that were similar but included more red, green, and yellow-blue competitors. Spiral ganglion cell axons of the auditory nerve were used to record auditory receptive fields that resembled gammatone filters.

IV. Results and analysis

Notebook users may easily discover that natural sceneries and sounds have enough statistics to build receptive fields approximating those in the early visual and auditory systems with a systematic demonstration of brain efficient coding for many modalities. The idea of efficiency is also important and must be consistent with the goals of neural coding, such as sparse or independent coding as opposed to compact coding, for instance. For all natural input modalities, ICA-encoded filters closely resemble physiologically observed receptive fields. In contrast, neural-like receptive field models were not created by PCA-encoded filters.

This notebook emphasises the requirement for adequate input data, such as natural scenes and noises, in addition to proper coding objectives. In contrast to those created with natural inputs, ICA-encoded filters from non-natural inputs are not comparable to physiologically determined receptive fields. This makes sense given that "natural" pictures and sounds have statistical relationships that are closer to those to which animals have evolved and made adaptations over time. The number of ICA components used has a greater impact on the code's running duration than the size of the pixel patches or the length of the audio snippets because dimensionality reduction is carried out internally. As the number of ICA dimensions rises, so does the quantity of data necessary to generate high-quality filters. This is a constraint for easily available examples, together with the execution time of the code.

One of the main results of this work is the creation of a self-contained, easily accessible notebook that illustrates neural efficient coding as a method of unsupervised learning. Efficacious coding has been the subject of other research, but this study offers an integrated, simple-to-use notebook of the tools and methods covered. Despite the distinction between various modalities in computational and neuroscience curriculum, our notebook integrates them in a methodical way. The created notebook emphasises that each modality can be described with simply a change in inputs by using the same five-step efficient coding technique to model the neuronal receptive fields.

Additionally,

this

notebook serves as an educational medium illustrating the power of computational principles like efficient coding to a broader audience of neuroscientists. We demonstrate ICA as a useful tool for developing effective, neural-like representations of sensory input through our work. In addition to computational effectiveness, ICA's neuronal plausibility from a biological perspective is equally crucial. For natural images, ICA produces filters that resemble brain structures and have characteristics similar to the receptive fields of V1 simple cells. However, ICA's biological plausibility is undermined by the fact that algorithmic implementations might differ. For instance, since neurons rely on the feedback data from neurons in the output layer, the learning rule in the infomax network is highly non-local, creating a biologically improbable system. More biologically tenable explanations for ICA-like learning in the brain have been put forth. The early techniques offered a local algorithm in which each neuron makes use of the connection data that is local to it. Another technique used a model that maximises information transmission via spiking neurons and intrinsic plasticity.

V. Conclusion

The article provides a concise explanation of the relationship between developing sensory systems and neurally appropriate efficient coding of the environmental environment. We developed a self-contained Jupyter Notebook to systematically illustrate the effective coding method for several visual and audio modalities. According to our research, compact codes, like PCA, provide filters that are more unlike to physiological receptive fields than independent, sparse coding objectives, like ICA. Therefore, regardless of the modality, the same four-step computational approach may be utilised to describe early sensory processing when the inputs are changed. The Jupyter Notebook is designed for beginner computational neuroscience research and general outreach to those with general neuroscience interests to help them grasp the power of unsupervised learning concepts, such as the efficient coding principle. This comprehensive review, which anybody interested in efficient coding or neuroscience may use regardless of programming experience, shows the power of computational principles like efficient coding. Early visual and auditory systems use the principle of efficient coding, which when understood, can shed light on more advanced sensory systems like olfaction and somatosensation. Our goal is to make this example understandable so that subsequent research on multimodal integration can be made easier by integrating earlier works that used the inadequate coding approach for various sensory modalities.

Reference

- [1] Sejnowski T J, Wiskott L, (2002) Slow feature analysis: unsupervised learning of invariances. *Neural Comput* 14(4):715–770.
- [2] Ruderman DL, van Hateren JH, (1998) Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. *Proceed Biol Sci/r Soc* 265(1412):2315–2320
- [3] Sherrington CS (1906) Observations on the scratch-reflex in the spinal dog. *J Physiol* 34(1–2):1–50.
- [4] Hawken M J and Shapley R, (2011) Color in the cortex: single- and double-opponent cells. *Vision Res* 51(7):701–717
- [5] Triesch J, Joshi P and Savin C, (2010) Independent component analysis in spiking neurons. *PLoS Comput Biol* 6(4):e1000757
- [6] Field DJ and Olshausen BA, (2000). Vision and the coding of natural images: the human brain may hold the secrets to the best image-compression algorithms. *American Scientist* 88(3): 238–245.
- [7] Field DJ and Olshausen BA, (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. *Nature* 381(6583):607–609

- [8] Oja E (1989) Neural networks principal components and subspaces. *International Journal of Neural System* 01(01):61–68
- [9] Linsker R (1997) A local learning rule that enables information maximization for arbitrary input distributions. *Neural Comput* 9(8):1661–1665
- [10] Lewicki MS (2002) Efficient coding of natural sounds. *Nat Neurosci* 5(4):356–363.
- [11] Lennie P (2003) The cost of cortical computation. *Curr Biol: CB* 13(6):493–497.
- [12] Herault J and Jutten C (1991) Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. *Signal Process* 24(1):1–10.
- [13] Palmer LA and Jones JP (1987b) The two-dimensional spatial structure of simple receptive fields in cat striate cortex. *J Neurophysiol* 58(6):1187–1211.
- [14] Palmer LA and Jones JP (1987a), An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. *J Neurophysiol* 58(6):1233–1258.
- [15] Shapley R, Hawken MJ and Johnson EN, (2008) The orientation selectivity of color-responsive neurons in macaque V1. *J Neurosci: of J Soc Neurosci* 28(32):8096–8106
- [16] Toyoizumi T and Isomura T (2018) Error-gated hebbian rule: a local learning rule for principal and independent component analysis. *Sci Rep* 8(1):1835.
- [17] Toyoizumi T and Isomura T, (2016) A local learning rule for independent component analysis *Sci Rep* 6 : 28073
- [18] Inki M, Hoyer PO and Hyvärinen A, (2001) Topographic independent component analysis. *Neural Comput* 13(7):1527–1558
- [19] Hoyer PO and Hyvärinen A, (2001) Topographic independent component analysis as a model of V1 organization and receptive fields. *Neuro computing* 38–40:1307–1315
- [20] Hyvärinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. *IEEE Trans Neural Netw/publ IEEE Neural Netw Council* 10(3):626–634 128 N. Urs et al.13
- [21] Wiesel TN and Hubel DH, (1968) Receptive fields and functional architecture of monkey striate cortex. *J Physiol* 195(1):215–243.
- [22] Wiesel TN and Hubel DH, (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. *J Physiol* 160:106–154.
- [23] Hyvärinen A and Hoyer PO,(2000). Independent component analysis applied to feature extraction from colour and stereo images. *Network*, 11(3): 191–210.
- [24] Chen Z and Haykin S, (2005) The cocktail party problem. *Neural Comput* 17(9):1875–1902
- [25] Triesch J, Savin C and Gerhard F, and (2009). A robust biologically plausible implementation of ICA-like learning. *ESANN*.
- [26] Cox DD, Scheirer WJ and Fong RC, (2018) Using human brain activity to guide machine learning. *Sci Rep* 8(1):5397.
- [27] Földiák P (1990) Forming sparse representations by local anti-Hebbian learning. *Biol Cybern* 64(2):165–170
- [28] Field DJ (1994) What is the goal of sensory coding? *Neural Comput* 6(4):559–601.
- [29] Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. *J Opt Soc Am. A, Opt Image Science* 4(12):2379–2394
- [30] Vincent P, Bengio Y, Courville A and Erhan D, (2010). Why Does Unsupervised Pre-training Help Deep Learning? (Y. W. Teh & M. Titterington (eds.); Vol. 9, pp. 201–208). *JMLR Workshop and Conference Proceedings*.
- [31] Rust NC, Zoccolan D and DiCarlo JJ, (2012) How does the brain solve visual object recognition? *Neuron* 73(3):415–434
- [32] de Jongh HR and de Boer E, (1978) On cochlear encoding: potentialities and limitations of the reverse-correlation technique. *J Acoust Soc Am* 63(1):115–135.
- [33] Vigário R, Kasprzak W, Karhunen J and Cichocki A, (1999) Neural networks for blind separation with unknown number of sources. *Neuro computing* 24(1):55–93 Common P (1994) Independent component analysis, A new concept? *Signal Process* 36(3):287–314.

- [34] Cherry EC (1953) Some experiments on the recognition of speech, with one and with two ears. *J Acoust Soc Am* 25(5):975–979
- [35] Bronkhorst AW (2015) The cocktail-party problem revisited: early processing and selection of multi talker speech. *Atten Percept Psychophys* 77(5):1465–1487
- [36] Wiskott L, Berkes P and Blaschke T, (2006) What is the relation between slow feature analysis and independent component analysis? *Neural Comput* 18(10):2495–2508
- [37] Wiskott L and Berkes P, (2005) Slow feature analysis yields a rich repertoire of complex cell properties. *J vis* 5(6):579–602
- [38] Sejnowski TJ and Bell AJ, (1997) The “independent components” of natural scenes are edge filters. *Vision Res* 37(23):3327–3338.
- [39] Albert MV, Urs N and Behpour S (2020). Towards an "Innate Learning" Efficient Coding Model using Spontaneous Neural Activity [Poster presentation]. In CMD-IT/ACM Richard Tapia Celebration of Diversity in Computing, Dallas, Texas, United States.
- [40] Barlow HB (1961) Possible principles underlying the transformation of sensory messages. *Sensory Commun* 1:217–234.
- [41] Goodhill GJ and Avitan L, (2018) code under construction: neural coding over development. *Trends Neurosci* 41(9):599–609
- [42] Field DJ, Schnabel A and Albert MV, (2008) Innate visual learning through spontaneous activity patterns. *PLoS Comput Biol* 4(8):e1000137