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Abstract

The efficient computing required for sensory processing is fueled by a blend of high level task dependent
learning and lowlevel unsupervised statistical structural learning. Sparse and independent coding techniques can
simulate brain functioning at the earliest stages of sensory processing utilising the identical coding mettthod
with just a modification in input. The authors offer a comprehensive discussion on Autonomous Component
Analysis (ACA), a neural coding mechanism that is effective in simulating fast auditory and visual neural
processing. Using a standardised five phase process, we developed an auto included, approachable Jupyter
notebook in python to show how to efficiently code for various modalities. The comparison of derived receptive
field models for each modality shows how neural codes do not form when inputs adequetly differ from those
that organisms were adapted to exercise. The presentation also demonstrates that ACA generates receptive field
models that are more neurally appropriate than those based on conventional squeezing techniques, such as Chief
Component Analysis (CCA). The five phase approach not only creates models that resemble neurons, but also
encourages code reprocess to highlight the input sceptic feature of the approach, which enables every modality
to be modelled with a single modification in inputs. This notebook makes it simple to see the connections
between unsupervised machine learning techniques and fast sensory neuroscience, which advances our
knowledge of how adaptable data driven neural networks form and their potential uses in the future.

Index Terms — Autonomous Component Analysis, Jupyter notebook, Chief Component Analysis

1. Introduction

Both neuroscientists and computer scientists stand to gain from closing the divide between neuroscience and
computational methods. Brain-inspired modelling has become a natural frame reference for developments in
artificial intelligence due to the ability of biological systems to function with great precision and amazing
efficiency in challenging and uncertain contexts. By precisely modelling those intuitions, computational
techniques can, on the other hand, verify and test hypotheses regarding the organisation and function of the
brain. Receptive field models based on stimulus-response pairings, for instance, can be used to predict early
visual and auditory brain responses, but utilising a computational paradigm is necessary to comprehend how
those receptive field models function as effective coding strategies.

Early sensory neuroscience uses receptive field models to better understand how sensory neurons respond. Such
images, however, only reveal "what" impetus triggers a specific neuron's reply; they do not always reveal "why"
neurons could be influenced by development and adaptation to behave in this style. Primary observations of the
initial visual cortex basic cell replies to impetus show reply characteristics which can be estimated by a Two
Dimentional Gabor wavelet code, but why choose this code out of all the possible coding schemes? According
to the efficient coding postulate, the aim of fast sensory exercising is to eliminate redundancy. However, this
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idea can be used to create a number of goals. First, it was shown how these fast visual codes may be created
using unsupervised machine learning using sparse coding of grayscale natural photos. Furthermore, identical
receptive fields were built on real images using autonomic coding and Autonomous Component
Analysis(ACA). Particularly, it has been discovered that only systematic encoding goals that are suitable for
neural depictions create more efficient depictions; these depictions may be compared to dense systematic codes
like CCA or other conventional element study methods. Only when these efficient neurally suitable techniques,
such ACA, are applied to real-world images do they produce filters that resemble the Two Dimentional Gabor
functions used in initial sensory excercising. The efficient coding hypothesis' universality across several
modalities, and its following application to derive neuronal receptive fields right away from sensory data, is one
of its most potent features. Although animals also view the environment in colour, over time, and even when
using binoculars, grayscale natural pictures encoded with a sparse or autonomous coding aim yield grayscale
brightness filters. Every of the visual modalities can be reached by merely a modification in input, which is
unique from a computational perspective. When ACA is used on real-world video sequences, primary visual
cortex receptive felds-like spatio-temporal features are produced. As evidenced by the issuing of spatio temporal
neuronal receptive fields in organisms, the generated filters at small spatial frequencies, for instance, were more
responsive to fast action than those at big spatial frequencies. In a similar vein, when ACA is applied to colour
natural images , the derived filters exhibit colour selectivity in patterns that are comparable to those seen in
experimentally measured receptive fields.

More pale filters with higher spatial frequencies were present. Blue-yellow, Red-green and Bright-dark channels
were clearly segregated in brain receptive fields, which is consistent with the issuing of receptive fields for
colour. Color opposition likewise followed this pattern. Similar to this, binocular receptive fields are created
when binocular pictures are fed into ACA. Similar to what is seen in nature, the distribution of receptive field
features includes a number of filters that are initially on one of the two eyes as well as a variation of divergence
shifts between the right and left eyes, that shows the existence of binocular divergence.

Systematic coding approaches can produce depiction of receptive fields that are similar to those measured
experimentally using grayscale, video, colour, binocular, and other representations and possible combinations.
Notably, auditory processing is also flexible enough to derive neuronal receptive fields through efficient coding
techniques. Likewise to how Two Dimentional Gabor filters resemble V1 receptive fields, gammatone flters are
a parametric model that could be utilized to describe the receptive felds of spiral ganglion cells in the cochlea.

ACA is capable of producing linear filters that resemble the gammatone filters found in nature by effectively
storing a range of natural sounds. With merely a modification in the input data, the exact coding method can
thus describe replies in a range of visual modalities as well as in the audio mechanism.

1I. Literature Review

By lowering the dimensionality of the input data in a way that causes little information loss, dense coding
eliminates data redundancy. A representation with a lower dimensionality than the input data is created from the
input data. For instance, with binary data, one typical objective in applied computing could be to decrease the
amount of Os and 1s to represent the actual data [1,2]. By performing a CCA on the data, one can produce such
compact codes. Finding potentially important components, or more specifically, linear arrangements of features,
that best explain the data variance, is the objective of CCA, a very flexible unsupervised learning technique. In
other words, CCA looks for the latent variables, or "hidden factors," that, if known, would enable us to forecast
the attribute values for particular samples[3,4]. Although these parts can only act for a portion of the inputs
because to the decreased dimensionality, CCA learns a small collection of parts to act for the input data. CCA
has been a popular mechanism for works like visualisation, compression of image, reduction of noise and
attribute engineering jobs for supervised machine learning because of its ability to reveal inherent data
structures[5,6,7].
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Sparse coding aims to encode information in a large community of neurons by limiting the number of
simultaneously active neurons. As opposed to compact coding, which aims to reduce both Os and 1s in the code,
binary coding aims to reduce the number of 1s. Due to the high metabolic cost of neuronal spiking, this is
somewhat justified scientifically.Unlike compact codes, sparse codes can generate more components than the
number of dimensions in the data to efficiently record higher order statistics built into data [8,9,10]. Finding the
underlying reason or hidden factors that explain data variability is one of the key objectives of encoding
systems. While compact codes like PCA make an effort to do this, reducing the size of the representation
imposes restrictions like forced orthogonality that make the components harder to understand and add statistical
dependence of high order [11,12]. Although, unsupervised learning goals which aim to maximise statistical
independence could be more effective and produce components that can be interpreted and used. The
unsupervised learning method of ACA can generate independent codes[13,14]. The cocktail party issue is a well
known example of a linear mixing issue. ICA was initially created to address the blind source separation issue.
Under a specific set of assumptions, ACA generates components by linearly combining attributes with replies
that are as statistically independent as possible. Notably, as will be mentioned, depending on the data, ICA
frequently generates codes that are sparse[15,16].

The persistence of the items around us leads to statistical regularities in sensory information. While common
variables like lighting, translation, rotation, etc. cause individual pixels to shift significantly over brief periods of
time, our mental representations of the world do not change as fast or dramatically[17,18]. To bias toward more
stable representations that correspond to this reality is a realistic goal for the coding of our natural sensory
experience. Finding meaningful representations that are not influenced by quickly altering, irrelevant
information becomes essential since invariant elements are essential for survival [19, 20]. Slow Feature Analysis
(SFA) is an unsupervised learning approach that aims to maximise the representation's invariance over time by
isolating those elements from multivariate data that change gradually over time. The similarities between the
filters produced by SFA and basic cell responses in neurons suggests that it can be compared to ICA.
Additionally, fascinating non-linear response characteristics like direction selectivity and inhibition, which are
similar to the response behavior of complex cells in V1, are present in SFA-derived filters. Furthermore, SFA
and ICA have similar characteristics when it comes to time limitations[21,22].

Empirically, natural sounds and images include many statistical dependencies besides linear correlations, and
PCA and other compact coding techniques fall short in capturing this higher-order statistical structure. There are
other helpful metrics for detecting latent variables, however PCA is restricted to deriving components by
maximising the variance and sequentially deleting the maximum variance component via forced
orthogonality[24,25].Despite a possible moderate correlation between two latent underlying variables, PCA
cannot capture the two latent variables on its own. It is difficult to understand and make use of the later PCA
components because of component orthogonality and the fact that earlier components capture the majority of
information. Furthermore, despite zero correlation, these orthogonal components identified by PCA may be very
reliant statistically. Because of these worries, compact codes, like those from PCA, could not be as effective at
detecting low-level statistical redundancy [26,27].

On the other hand, sparse information encoding has a number of benefits. Although ubiquitous and expected,
individual neuronal fring is metabolically expensive. Analyzing the encoding mechanism used by the primary
visual cortex requires consideration of task-level neuronal involvement. Representations that require fewer
active neurons to encode sensory information become crucial when there are less than 1% of concurrently active
neurons. As fewer neurons are activated at once as a result of sparser coding, less energy is used and metabolic
efficiency is increased while still producing a trustworthy representation of the signal [28,29].

Neural receptive fields for natural sounds and images have been successfully created through empirical
demonstrations of sparse and independent coding. Sparse representations offer a better level of statistical
independence and have effectively accounted for receptive fled features. The generated sparse codes were
discovered to be selective to position, orientation, and spatial frequency identical to the response qualities of
straightforward cell receptive felds, and they resembled 2D Gabor filters [30,31].
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Linear codes produced by independent coding by ICA similarly resemble neuronal receptive fields in the
primary visual cortex. Due to the identical receptive field profiles in sparse codes, it is noteworthy that these
receptive fields produce sparse neuronal responses as expected. The experiment that follows assumes sparse
sources because ICA and sparse coding are thought to be identical with sparse sources[32,33].

More specifically, because the super-Gaussian distribution is sparse, ICA produces a model that is comparable
to sparse coding but with a super-Gaussian prior. Unlike PCA, ICA does not have a stringent ordering
requirement and produces components that are not required to be orthogonal. Additionally, the sparse responses
that follow allow for a reduction in the high metabolic cost associated with a single neuron's spiking
activity[34,35]. The first linear stage of visual and auditory processing in the brain has goals that can be
represented by ICA. Although topographic independent component analysis is a non-linear encoding approach
related to ICA, it is a linear modelling strategy with the statistical independence assumption[36,37].

However, the end result provides filters that meet the requirements of the other objectives, even though in
practise the effective coding techniques that produce V1-like receptive fields may have different target
functions. This is why we are using one of these objectives, ICA, as a stand-in for neural efficient coding targets
rather than recommending one objective over the others. To underscore how important the precise definition of
"efciency"” is in relation to neural coding, we also contrast this target with typical non-neural efcient coding
objectives, such as PCA[38,39].

Users of notebook computers can easily observe that natural images and sounds have enough statistics to form
receptive fields that resemble those in the earliest visual and auditory systems by way of a systematic
demonstration of neural efficient coding for many modalities. The idea of efficiency is also important and must
align with the goals of neural coding, such as independent or sparse coding as opposed to compact coding. The
receptive fields from physiology that have been empirically measured closely resemble ICA-encoded filters for
all natural input modalities. However, PCA-encoded flters did not result in neural-like receptive feld models
[40,41].

I Proposed Mechanism
The following efficient coding principle demonstration is given via a self-contained, openly accessible Jupyter
Notebook. The sensory processing of visual and aural modalities, specifically grayscale images, colour images,
and audio, is described in this notebook. The computational approach for efficient encoding is the same
regardless of the modality being modelled because the efficient coding hypothesis uses the same algorithm
regardless of the input. The five steps of this method are shown out in Figure 1 and are detailed below. Anyone
can use the notebook demonstration to get hands-on, basic experience with neural efficient coding.

| 1. Collect “natural” data for encoding, e.g. images and sound clips

2. Extract random patches from the collected sensory data
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3. Apply neurally appropriate efficient encoding algorithm
Independent Components Analysis (ICA)

4. Display a visual tiling of derived neural filters
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5. Compare with experimentally measured receptive fields

Fig. 1 A five phase modality agnostic computating strategy to model efcient coding with a modification
in

inputs. (1) Sensory data collection . (2) Random sample extraction (3) Neurally appropriate encoding
algorithm (4) Visually tile the derived flters from the algorithm. (5) Compare the derived encodings
with their corresponding experimentally measured receptive fields

1. Sensory Data Collection

We initially gather information about several sensory modalities, such as the visual and aural. Additionally, we
gather real and artificial inputs for each modality to show how the data affects the existence or lack of neural
codes as seen in animals. The term "natural" in this study refers to stimuli that occur in our environment and
also have common statistical characteristics.Natural scenes are representations of the surrounding visual world,
devoid of any signs of civilization. Examples of natural visual scenes include rocks, trees, mountains, plants,
prairies, flowers, and bodies of water. Similar to this, natural noises such as chirping birds, rustling leaves, and
human speech all exhibit harmonic, anharmonic, or both properties. However, because our definition of
"natural” is based on the statistical features that lead to the robustness of data and not rigorously determined by
the statistics inherent in the data itself, images of human-made structures, such as buildings and man-made
noises, do not qualify as being natural.

2. Random sample extraction

The sensory input is preprocessed to extract smaller subsamples after data collection for each modality and
before running an encoding method. With a certain amount of samples per image, samples are randomly
selected from the dataset for each modality. In order to build a single samples x features matrix, image and
sound samples are collected, and multidimensional samples such as 2D or 3D image patches with colour layers
are fattened into 1D vector representations. For each modality, we run tests with 100K and 500K samples. For
the visual modality, grayscale and colour images are displayed using patch widths of 8x8 pixels and 16x16
pixels, respectively. For colour photos, we also give channel information. Then, for each grayscale image patch,
each of these pixel patches is moulded into a 64 or 256 dimensional vector. These lower patch sizes were chosen
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to keep the necessary computations quick and efficient so that the Jupyter Notebook will run on a variety of
computing platforms with less memory utilisation. Before removing pixel patches, images were adjusted to a
zero mean and unit variance. As a result of a random sampling of patches, blank patches were thrown away.
Additionally, samples from extracted image patches were standardised to a zero mean and a unit variance. For
the audio modality, we downsample at a rate of 3:1 and extract 100K and 500K smaller sound clips of 100
dimensions from a sampling frequency of 44.1 kHz; the sound clips have a length of about 7ms.

3. Encoding algorithm application

We used two unsupervised machine learning algorithms to compare neurally and non-neurally efficient codes.
In particular, we apply ICA and PCA using the Fast ICA technique to simulate the effective coding of sensory
input.

Fast ICA and PCA implementations can be found in scikit-learn, a Python machine learning package. The ideal
value for the number of components was established on an ad hoc basis after varying the number of components
for ICA and PCA.

4. Derrived Filter Display

Applying the encoding process to the gathered data produces filters. To present these filters for visual evaluation
is the purpose of this stage. The rows and columns in the visual tiling stand in for the derived Gabor- and
gammatone-like filters. The code for showing the original extracted patches is repeated, regardless of the
modality, to graphically represent the derived filters.

5. Physiological filters Comparison

The final phase involves a visual comparison of the resulting filters to physiologically based receptive felds that
have been experimentally measured. Previous experimental neuroscience studies assessing neuronal receptive
fields provided the physiological benchmarks for receptive fields. For grayscale images, it was discovered that
simple cells in the primary visual cortex had receptive fields that resembled 2D Gabor wavelets. Color images
were detected using 2D Gabor filters that were similar but included more red, green, and yellow-blue
competitors. Spiral ganglion cell axons of the auditory nerve were used to record auditory receptive fields that
resembled gammatone filters.

Iv. Results and analysis

Notebook users may easily discover that natural sceneries and sounds have enough statistics to build receptive
fields approximating those in the early visual and auditory systems with a systematic demonstration of brain
efficient coding for many modalities. The idea of efficiency is also important and must be consistent with the
goals of neural coding, such as sparse or independent coding as opposed to compact coding, for instance. For all
natural input modalities, ICA-encoded filters closely resemble physiologically observed receptive fields. In
contrast, neural-like receptive feld models were not created by PCA-encoded flters.

This notebook emphasises the requirement for adequate input data, such as natural scenes and noises, in addition
to proper coding objectives. In contrast to those created with natural inputs, ICA-encoded filters from non-
natural inputs are not comparable to physiologically determined receptive fields. This makes sense given that
"natural" pictures and sounds have statistical relationships that are closer to those to which animals have
evolved and made adaptations over time. The number of ICA components used has a greater impact on the
code's running duration than the size of the pixel patches or the length of the audio snippets because
dimensionality reduction is carried out internally. As the number of ICA dimensions rises, so does the quantity
of data necessary to generate high-quality filters. This is a constraint for easily available examples, together with
the execution time of the code.
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One of the main results of this work is the creation of a self-contained, easily accessible notebook that illustrates
neural efficient coding as a method of unsupervised learning.Efficacious coding has been the subject of other
research, but this study offers an integrated, simple-to-use notebook of the tools and methods covered. Despite
the distinction between various modalities in computational and neuroscience curriculum, our notebook
integrates them in a methodical way. The created notebook emphasises that each modality can be described with
simply a change in inputs by using the same five-step efficient coding technique to model the neuronal receptive
fields. Additionally, this
notebook serves as an educational medium illustrating the power of computational principles like efcient coding
to a broader audience of neuroscientists. We demonstrate ICA as a useful tool for developing effective, neural-
like representations of sensory input through our work. In addition to computational effectiveness, ICA's
neuronal plausibility from a biological perspective is equally crucial. For natural images, ICA produces filters
that resemble brain structures and have characteristics similar to the receptive fields of V1 simple cells.
However, ICA's biological plausibility is undermined by the fact that algorithmic implementations might differ.
For instance, since neurons rely on the feedback data from neurons in the output layer, the learning rule in the
infomax network is highly non-local, creating a biologically improbable system. More biologically tenable
explanations for ICA-like learning in the brain have been put forth. The early techniques offered a local
algorithm in which each neuron makes use of the connection data that is local to it. Another technique used a
model that maximises information transmission via spiking neurons and intrinsic plasticity.

V. Conclusion

The article provides a concise explanation of the relationship between developing sensory systems and neurally
appropriate efficient coding of the environmental environment. We developed a self-contained Jupyter
Notebook to systematically illustrate the effective coding method for several visual and audio modalities.
According to our research, compact codes, like PCA, provide filters that are more unlike to physiological
receptive fields than independent, sparse coding objectives, like ICA. Therefore, regardless of the modality, the
same four-step computational approach may be utilised to describe early sensory processing when the inputs are
changed.The Jupyter Notebook is designed for beginner computational neuroscience research and general
outreach to those with general neuroscience interests to help them grasp the power of unsupervised learning
concepts, such as the efficient coding principle. This comprehensive review, which anybody interested in
efficient coding or neuroscience may use regardless of programming experience, shows the power of
computational principles like efficient coding. Early visual and auditory systems use the principle of efficient
coding, which when understood, can shed light on more advanced sensory systems like olfaction and
somatosensation. Our goal is to make this example understandable so that subsequent research on multimodal
integration can be made easier by integrating earlier works that used the inadequate coding approach for various
sensory modalities.

Reference

[17 Sejnowski T J, Wiskott L, (2002) Slow feature analysis: unsupervised learning of in variances. Neural
Comput 14(4):715-770.

[2] Ruderman DL, van Hateren JH, (1998) Independent component analysis of natural image sequencesyields
spatio-temporal flters similar to simple cells in primary visual cortex. Proceed Biol Sci/r Soc
265(1412):2315-2320

[3] Sherrington CS (1906) Observations on the scratch-refex in the spinal dog. J P hysiol 34(1-2):1-50.

[4] Hawken M J and Shapley R, (2011) Color in the cortex: single- and double-opponent cells. Vision Res
51(7):701-717

[5] Triesch J, Joshi P and Savin C, (2010) Independent component analysis in spiking neurons. PLoS Comput
Biol 6(4):e1000757

[6] Field DJ and Olshausen BA, (2000). Vision and the coding of natural images: the human brain may hold the
secrets to the best image-compression algorithms. American Scientist 88(3): 238-245.

[7] Field DJ and Olshausen BA, (1996) Emergence of simple-cell receptive field properties by learning a sparse
code for natural images. Nature 381(6583):607—-609

http://kuwaitjournals.com



Kuwait Journal of Education
ISSN: 2984-7656
Vol 4 Issue 1 (2026)

[8] Oja E (1989) Neural networks principal components and subspaces. International Journal of Neural System
01(01):61-68

[9] Linsker R (1997) A local learning rule that enables information maximization for arbitrary input
distributions. Neural Comput 9(8):1661-1665

[10] Lewicki MS (2002) Efficient coding of natural sounds. Nat Neurosci 5(4):356—-363.

[11] Lennie P (2003) The cost of cortical computation. Curr Biol: CB 13(6):493-497.

[12] Herault J and Jutten C (1991) Blind separation of sources, part I: An adaptive algorithm based on
neuromimetic architecture. Signal Process 24(1):1-10.

[13] Palmer LA and Jones JP (1987b) The two-dimensional spatial structure of simple receptive fields in cat
striate cortex. J Neurophysiol 58(6):1187—-1211.

[14] Palmer LA and Jones JP (1987a), An evaluation of the two-dimensional Gabor filter model of simple
receptive fields in cat striate cortex. J Neurophysiol 58(6):1233—1258.

[15] Shapley R, Hawken MJ and Johnson EN, (2008) The orientation selectivity of color-responsive neurons in
macaque V1. J Neurosci: of J Soc Neurosci 28(32):8096-8106

[16] Toyoizumi T and Isomura T (2018) Error-gated hebbian rule: a local learning rule for principal and
independent component analysis. Sci Rep 8(1):1835.

[17] Toyoizumi T and Isomura T, (2016) A local learning rule for independent component analysis Sci Rep 6 :
28073

[18] Inki M, Hoyer PO and Hyvérinen A, (2001) Topographic independent component analysis. Neural Comput
13(7):1527-1558

[19] Hoyer PO and Hyvirinen A, (2001) Topographic independent component analysis as a model of V1
organization and receptive fields. Neuro computing 38—40:1307-1315

[20] Hyvérinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE
Trans Neural Netw/publ IEEE Neural Netw Council 10(3):626—634 128 N. Urs et al.13

[21] Wiesel TN and Hubel DH, (1968) Receptive fields and functional architecture of monkey striate cortex. J
Physiol 195(1):215-243.

[22] Wiesel TN and Hubel DH, (1962) Receptive fields, binocular interaction and functional architecture in the
cat’s visual cortex. J Physiol 160:106—154.

[23] Hyvérinen A and Hoyer PO,(2000). Independent component analysis applied to feature extraction from
colour and stereo images. Network, 11(3): 191-210.

[24] Chen Z and Haykin S, (2005) The cocktail party problem. Neural Comput 17(9):1875-1902

[25] Triesch J, Savin C and Gerhard F, and (2009). A robust biologically plausible implementation of ICA-like
learning. ESANN.

[26] Cox DD, Scheirer WJ and Fong RC, (2018) Using human brain activity to guide machine learning. Sci Rep
8(1):5397.

[27] Foldiak P (1990) Forming sparse representations by local anti-Hebbian learning. Biol Cybern 64(2):165—
170

[28] Field DJ (1994) What is the goal of sensory coding? Neural Comput 6(4):559-601.

[29] Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical
cells. J Opt Soc Am. A, Opt Image Science 4(12):2379-2394

[30] Vincent P, Bengio Y, Courville A and Erhan D, (2010). Why Does Unsupervised Pre-training Help Deep
Learning? (Y. W. Teh & M. Titterington (eds.); Vol. 9, pp. 201-208). JMLR Workshop and Conference
Proceedings.

[31] Rust NC, Zoccolan D and DiCarlo JJ, (2012) How does the brain solve visual object recognition? Neuron
73(3):415-434

[32] de Jongh HR and de Boer E, (1978) On cochlear encoding: potentialities and limitations of the reverse-
correlation technique. J Acoust Soc Am 63(1):115-135.

[33] Vigario R, Kasprzak W, Karhunen J and Cichocki A, (1999) Neural networks for blind separation with
unknown number of sources. Neuro computing 24(1):55-93 Common P (1994) Independent component
analysis, A new concept? Signal Process 36(3):287-314.

http://kuwaitjournals.com



Kuwait Journal of Education
ISSN: 2984-7656
Vol 4 Issue 1 (2026)

[34] Cherry EC (1953) Some experiments on the recognition of speech, with one and with two ears. J Acoust
Soc Am 25(5):975-979

[35] Bronkhorst AW (2015) The cocktail-party problem revisited: early processing and selection of multi talker
speech. Atten Percept Psychophys 77(5):1465-1487

[36] Wiskott L, Berkes P and Blaschke T, (2006) What is the relation between slow feature analysis and
independent component analysis? Neural Comput 18(10):2495-2508

[37] Wiskott L and Berkes P, (2005) Slow feature analysis yields a rich repertoire of complex cell properties. J
vis 5(6):579-602

[38] Sejnowski TJ and Bell AJ, (1997) The “independent components” of natural scenes are edge filters. Vision
Res 37(23):3327-3338.

[39] Albert MV, Urs N and Behpour S (2020). Towards an "Innate Learning" Efficient Coding Model using
Spontaneous Neural Activity [Poster presentation].In CMD-IT/ACM Richard Tapia Celebration of
Diversity in Computing, Dallas, Texas, United States.

[40] Barlow HB (1961) Possible principles underlying the transformation of sensory messages. Sensory
Commun 1:217-234.

[41] Goodhill GJ and Avitan L, (2018) code under construction: neural coding over development. Trends
Neurosci 41(9):599—609

[42] Field DJ, Schnabel A and Albert MV, (2008) Innate visual learning through spontaneous activity patterns.
PLoS Comput Biol 4(8):¢1000137

http://kuwaitjournals.com



